zbMATH — the first resource for mathematics

An elementary proof of the Davenport-Hasse relation. (English) Zbl 0999.11046
The author deduces the Davenport-Hasse relation [H. M. Davenport and H. Hasse, J. Reine Angew. Math. 172, 151–182 (1934; Zbl 0010.33803)] for \(\mathbb Z/p\mathbb Z\) from a congruence for Gauss periods he proved in [Acta Arith. 85, 377–388 (1998; Zbl 0912.11041)].
11L05 Gauss and Kloosterman sums; generalizations
11R18 Cyclotomic extensions
Full Text: EuDML
[1] BERNDT B. C.-EVANS R. J.: Sums of Gauss, Eisenstein, Jacobi, Jacobsthal and Brewer. Illinois. J. Math. 23 (1979), 374-437. · Zbl 0393.12029
[2] DAVENPORT H.-HASSE H.: Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fallen. J. Reine Angew. Math. 172 (1934), 151-182. · Zbl 0010.33803
[3] HASSE H.: Vorlesungen über Zahlentheorie. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1950. · Zbl 0038.17703
[4] JAKUBEC S.: Note on the congruence of Ankeny-Artin-Chowla type modulo p2. Acta Arith. 85 (1998), 377-388. · Zbl 0912.11041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.