×

Polynomials with height 1 and prescribed vanishing at 1. (English) Zbl 0999.12001

Given a positive integer \(m\), what are the real polynomials of minimal degree \(d(m)\) with all coefficients equal to one of \(0, \pm 1\) and divisible by \((x-1)^m\)? This paper describes two strategies for determining an upper bound on \(d(m)\) and presents various results on when such polynomials are divisible by certain cyclotomic polynomials of order \(p\) where \(p\) is a prime or equal to 4. A search algorithm that produces polynomials with the required coefficients of given degree \(d\) for given \(m\) is described and used to find the best examples for \(3 \leq m \leq 10\) and partial results when \(m = 11, 12\). For \(1 \leq m \leq 21\), the known polynomials of least degree are all products of polynomials of the type \(x^e - 1\). Three questions are posed. Are there polynomials of degree \(d(m)\) some of which are not of this type? Is there always a reciprocal polynomial of degree \(d(m)\)? Is \(d(21) < 294\)?

MSC:

12D05 Polynomials in real and complex fields: factorization
12Y05 Computational aspects of field theory and polynomials (MSC2010)
11R09 Polynomials (irreducibility, etc.)

Software:

NTL
PDFBibTeX XMLCite
Full Text: DOI Euclid EuDML

Online Encyclopedia of Integer Sequences:

Minimal degree of a height one multiple of (x-1)^n.

References:

[1] Amoroso F., Boll. Un. Mat. Ital. B (7) 9 (4) pp 1021– (1995)
[2] Belov A. S., Mat. Zametki 59 pp 627– (1996)
[3] Bloch S., Proc. London Math. Soc. 33 pp 102– (1932) · Zbl 0003.10501 · doi:10.1112/plms/s2-33.1.102
[4] Bombieri E., Analytic number theory and Diophantine problems (Stillwater, OK, 1984) pp 53– (1987) · doi:10.1007/978-1-4612-4816-3_3
[5] Borwein P., Enseign. Math. (2) 40 (1) pp 3– (1994)
[6] Borwein P., Proc. London Math. Soc. (3) 79 (1) pp 22– (1999) · Zbl 1039.11046 · doi:10.1112/S0024611599011831
[7] Boyd D. W., Math. Comp. 66 (220) pp 1697– (1997) · Zbl 0893.12004 · doi:10.1090/S0025-5718-97-00892-2
[8] Boyd D. W., ”On a problem of Byrnes concerning polynomials with restricted coefficients. II” (1997) · Zbl 0893.12004
[9] Edwards H. M., Fermat’s last theorem: A genetic introduction to algebraic number theory (1977) · Zbl 0355.12001
[10] Erdos P., Acad. Serbe Sci. Publ. Inst. Math. 13 pp 29– (1959)
[11] Lenstra A. K., Math. Ann. 261 (4) pp 515– (1982) · Zbl 0488.12001 · doi:10.1007/BF01457454
[12] Maltby R., Math. Comp. 66 (219) pp 1323– (1997) · Zbl 1036.11539 · doi:10.1090/S0025-5718-97-00865-X
[13] Mignotte M., Journées Arithmétiques 1980 (Exeter, 1980) pp 364– (1982) · doi:10.1017/CBO9780511662027.026
[14] Nijenhuis A., Combinatorial algorithms for computers and calculators,, 2. ed. (1978) · Zbl 0476.68047
[15] Schur I., Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl. pp 403– (1933)
[16] Shoup V., ”NTL: A library for doing number theory” (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.