zbMATH — the first resource for mathematics

On the acylindrical accessibility of finitely presented groups. (Sur l’accessibilité acylindrique des groupes de présentation finie.) (French) Zbl 0999.20017
Summary: Let \(G\) be a group and \(\tau\) a \(G\)-tree. In this paper, we assume that \(G\) does not split as an amalgam \(G=A*_CB\) or HNN extension \(G=A*_C\) over a group \(C\) which stabilizes a segment of length greater than \(k\) in \(\tau\) (\(k\geq 2\)); if \(\tau\) does not contain a proper invariant subtree, we prove that the number of vertices of \(\tau/G\) is bounded by \(12kT\), where \(T\) measures the complexity of a presentation of \(G\).

20E08 Groups acting on trees
20F05 Generators, relations, and presentations of groups
20F65 Geometric group theory
20F67 Hyperbolic groups and nonpositively curved groups
20E06 Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations
Full Text: DOI Numdam EuDML
[1] M. BESTVINA, M. FEIGHN, Bounding the complexity of simplicial group actions on trees, Inv. Math., 103 (1991), 449-469. · Zbl 0724.20019
[2] T. DELZANT, Décomposition d’un groupe en produit libre ou somme amalgamée, Crelle J., 470 (1996), 153-180. · Zbl 0836.20038
[3] T. DELZANT, L’image d’un groupe dans un groupe hyperbolique, Com. Math. Helv., 70 (1995), 267-284. · Zbl 0834.20038
[4] T. DELZANT, L. POTYAGAÏLO, Accessibilité hiérarchique des groupes de présentation finie, preprint, 1998. · Zbl 0996.20027
[5] W. DICKS, M.J. DUNWOODY, Group acting on graphs, Cambridge Studies in Adv. Math., 17, Cambridge (1989). · Zbl 0665.20001
[6] M.J. DUNWOODY, The accessibility of finitely presented groups, Inv. Math., 81 (1985), 449-457. · Zbl 0572.20025
[7] A. HAEFLIGER, Complex of groups and orbihedra, in ʻGroup theory from a geometric point of viewʼ, E. Ghys, A. Haefliger A. Verjovski eds., World Scientific, 1991.
[8] Z. SELA, Acylindrical accessibility, Inv. Math., 129 (1997), 527-565. · Zbl 0887.20017
[9] J.-P. SERRE, SL2, arbres et amalgames, Astérisque, 46 (1977). · Zbl 0369.20013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.