Kigami, Jun; Strichartz, Robert S.; Walker, Katharine C. Constructing a Laplacian on the diamond fractal. (English) Zbl 0999.31007 Exp. Math. 10, No. 3, 437-448 (2001). A Laplace operator on a finitely ramified (p.c.f. self-similar) fractal can be constructed, for example, by the methods of J. Kigami [“Analysis on fractals”. Cambridge Tracts in Math. 143, Cambridge Univ. Press (2001; Zbl 0998.28004)] provided a nonlinear finite-dimensional eigenvalue problem possesses a unique solution (up to positive multiples). The authors consider the diamond fractal which is only p.c.f. self-similar in a generalized sense because it seems to be partly finitely, partly infinitely ramified. But, interpreted as a graph-directed construction in the sense of R. D. Mauldin and S. C. Williams [Trans. Am. Math. Soc. 309, 811-829 (1988; Zbl 0706.28007)], it turns out be finitely ramified. Thus the eigenvalue equation can be solved algebraically. The uniqueness of the solution (up to positive multiples) remains open but experimental evidence for it is provided. Reviewer: Volker Metz (Bielefeld) Cited in 18 Documents MSC: 31C20 Discrete potential theory 28A80 Fractals Keywords:Laplace operator; fractals; nonlinear eigenvalue problem Citations:Zbl 0998.28004; Zbl 0706.28007 × Cite Format Result Cite Review PDF Full Text: DOI Euclid EuDML References: [1] Barlow M. T., Lectures on probability theory and statistics (Saint-Flour, 1995) pp 1– (1998) · doi:10.1007/BFb0092537 [2] Edgar G. A., Math. Intelligencer 13 (3) pp 44– (1991) · doi:10.1007/BF03023834 [3] Hambly B., ”Finitely ramified graph directed fractals, spectral asymptotics and the multidimensional renewal theorem” (1999) [4] Kigami J., Japan J. Appl. Math. 6 (2) pp 259– (1989) · Zbl 0686.31003 · doi:10.1007/BF03167882 [5] Kigami J., Trans. Amer. Math. Soc. 335 (2) pp 721– (1993) · Zbl 0773.31009 · doi:10.2307/2154402 [6] DOI: 10.1017/CBO9780511470943 · doi:10.1017/CBO9780511470943 [7] Lindstrøm T., Brownian motion on nested fractals (1990) · Zbl 0688.60065 [8] Mauldin R. D., Trans. Amer. Math. Soc. 309 (2) pp 811– (1988) · doi:10.1090/S0002-9947-1988-0961615-4 [9] Sabot C., Ann. Sci. École Norm. Sup. (4) 30 (5) pp 605– (1997) [10] Strichartz R. S., Indiana Univ. Math. J. 48 (1) pp 1– (1999) [11] DOI: 10.1080/10586458.1995.10504313 · Zbl 0860.28005 · doi:10.1080/10586458.1995.10504313 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.