Lyakhovich, Simon; Zabzine, Maxim Poisson geometry of sigma models with extended supersymmetry. (English) Zbl 0999.81044 Phys. Lett., B 548, No. 3-4, 243-251 (2002). Summary: We consider a general \(N=(2,2)\) nonlinear sigma model with a torsion. We show that the consistency of \(N=(2,2)\) supersymmetry implies that the target manifold is necessary equipped with two (in general, different) Poisson structures. Finally we argue that the Poisson geometry of the target space is a characteristic feature of the sigma models with extended supersymmetry. Cited in 21 Documents MSC: 81T10 Model quantum field theories 81T60 Supersymmetric field theories in quantum mechanics Keywords:\(N=(2,2)\) supersymmetry; target manifold × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Zumino, B., Phys. Lett. B, 87, 203 (1979) [2] Alvarez-Gaumé, L.; Freedman, D. Z., Commun. Math. Phys., 80, 443 (1981) [3] Gates, S. J., Nucl. Phys. B, 238, 349 (1984) [4] Gates, S. J.; Hull, C. M.; Roček, M., Nucl. Phys. B, 248, 157 (1984) [5] Hitchin, N. J.; Karlhede, A.; Lindström, U.; Roček, M., Commun. Math. Phys., 108, 535 (1987) · Zbl 0612.53043 [6] Ikeda, N., Ann. Phys., 235, 435 (1994) · Zbl 0807.53070 [7] Schaller, P.; Strobl, T., Mod. Phys. Lett. A, 9, 3129 (1994) · Zbl 1015.81574 [8] Cattaneo, A. S.; Felder, G., Commun. Math. Phys., 212, 591 (2000) · Zbl 1038.53088 [9] Kontsevich, M. [10] Cattaneo, A. S.; Felder, G.; Tomassini, L. [11] Fedosov, B. V., J. Differential Geom., 40, 213 (1994) · Zbl 0812.53034 [12] Schouten, J. A., On differential operators of first order in tensor calculus, (Convengo Int. Diff. Geom. Italia, 1953 (1954), Cremonese: Cremonese Roma) · Zbl 0059.15301 [13] Batalin, I. A.; Vilkovisky, G. A., Phys. Lett. B, 102, 27 (1981) [14] Buscher, T.; Lindström, U.; Roček, M., Phys. Lett. B, 202, 94 (1988) [15] M. Roček, Modified Calabi-Yau manifolds with torsion, in: Proceedings of Mirror Symmetry Workshop, MSRI, Berkeley, CA, May 1991, IASSNS-HEP-91-43; M. Roček, Modified Calabi-Yau manifolds with torsion, in: Proceedings of Mirror Symmetry Workshop, MSRI, Berkeley, CA, May 1991, IASSNS-HEP-91-43 [16] Roček, M.; Schoutens, K.; Sevrin, A., Phys. Lett. B, 265, 303 (1991) [17] Ivanov, I. T.; Kim, B. B.; Roček, M., Phys. Lett. B, 343, 133 (1995) [18] Sevrin, A.; Troost, J., Nucl. Phys. B, 492, 623 (1997) · Zbl 1004.81564 [19] Bogaerts, J.; Sevrin, A.; van der Loo, S.; Van Gils, S., Nucl. Phys. B, 562, 277 (1999) · Zbl 0958.81194 [20] Spindel, P.; Sevrin, A.; Troost, W.; Van Proeyen, A., Phys. Lett. B, 206, 71 (1988) [21] Spindel, P.; Sevrin, A.; Troost, W.; Van Proeyen, A., Nucl. Phys. B, 308, 662 (1988) [22] Sevrin, A.; Troost, W.; Van Proeyen, A.; Spindel, P., Nucl. Phys. B, 311, 465 (1988) [23] Yano, K., Differential Geometry on Complex and Almost Complex Spaces (1965), Pergamon: Pergamon Oxford · Zbl 0127.12405 [24] Vaisman, I., Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, 118 (1994), Birkhäuser: Birkhäuser Basel · Zbl 0852.58042 [25] Magri, F., J. Math. Phys., 19, 1156 (1978) · Zbl 0383.35065 [26] Gates, S. J., Phys. Lett. B, 338, 31 (1994) [27] Gates, S. J.; Ketov, S. V., Phys. Lett. B, 418, 111 (1998) [28] Lindström, U.; Zabzine, M. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.