×

zbMATH — the first resource for mathematics

Syntomic regulators and \(p\)-adic integration. II: \(K_2\) of curves. (English) Zbl 1001.19004
Let \(C\) be a smooth complete curve over \(\mathbb{C}_p\) with good reduction. R. Coleman and E. deShalit [Invent. Math. 93, No. 2, 239-266 (1988; Zbl 0655.14010)] defined a \(p\)-adic regulator \[ r_{p,C}: K_2(\mathbb{C}_p(C)) \rightarrow \text{Hom} (H^0(C,\Omega^1_{C/\mathbb{C}_p}),\mathbb{C}_p) \] based on Coleman’s \(p\)-adic integration theory. In the case that \(C\) arises via base change from a smooth surjective scheme \(Z\) over the ring of integers in a finite extension of \(\mathbb{Q}_p\), the author compares the regulator of Coleman and deShalit with the syntomic regulator \[ c_2^p:K_2(Z) \rightarrow H^{2}_{\text{syn}}(Z,2) \] defined by the author in the first part of this paper [A. Besser, Isr. J. Math. 120, Pt. B, 291-334 (2000; Zbl 1001.19003)]. The main result shows that these two regulators are in fact canonically related via Poincaré duality. The main technical tool is the notion of a local index, a generalized residue. The main result then follows from a generalization of R. F. Coleman’s reciprocity law [Compos. Math. 72, No. 2, 205-235 (1989; Zbl 0706.14013)] in terms of Coleman functions and local indices.

MSC:
19E20 Relations of \(K\)-theory with cohomology theories
14F30 \(p\)-adic cohomology, crystalline cohomology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Besser and R. de Jeu,The syntomic regulator for K-theory of fields, Work in progress, 1999. · Zbl 1106.11024
[2] Beilinson, A. A., Higher regulators and values of L-functions of curves, Functional Analysis and its Applications, 14, 116-118, (1980) · Zbl 0475.14015
[3] P. Berthelot,Cohomologie rigide et cohomologie rigide a support propres, premier partie, Preprint 96-03 of the University of Rennes, available at http://www.maths.univ-rennes1.fr/ berthelo/, 1996. · Zbl 0655.14010
[4] P. Berthelot,Finitude et pureté cohomologique en cohomologie rigide, Inventiones Mathematicae128 (1997), 329-377, with an appendix in English by A. J. de Jong. · Zbl 0908.14005
[5] A. Besser,Syntomic regulators and p-adic integration I: rigid syntomic regulators, this volume. · Zbl 1001.19003
[6] Coleman, R.; Shalit, E., P-adic regulators on curves and special values of p-adic L-functions, Inventiones Mathematicae, 93, 239-266, (1988) · Zbl 0655.14010
[7] Coleman, R., Reciprocity laws on curves, Compositio Mathematica, 72, 205-235, (1989) · Zbl 0706.14013
[8] M. Gros,Régulateurs syntomiques et valeurs de fonctions L p-adiques. I, Inventiones Mathematicae99 (1990), 293-320, with an appendix by Masato Kurihara.. · Zbl 0667.14006
[9] G. Harder,Die Kohomologie S-arithmetischer Gruppen über Funktionenkörpern, Inventiones Mathematicae42 (1977), 135-175. · Zbl 0391.20036
[10] Katz, N.; Messing, W., Some consequences of the Riemann hypothesis for varieties over finite fields, Inventiones Mathematicae, 23, 73-77, (1974) · Zbl 0275.14011
[11] Nizioł, W., On the image of p-adic regulators, Inventiones Mathematicae, 127, 375-400, (1997) · Zbl 0928.14014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.