Jost, Jürgen; Wang, Guofang Classification of solutions of a Toda system in \(\mathbb{R}^2\). (English) Zbl 1001.35037 Int. Math. Res. Not. 2002, No. 6, 277-290 (2002). The paper deals with the 2-dimensional Toda system for SU(N+1) of the form \[ -\frac{1}{2}\triangle u_i=\sum \limits_{j=1}^Na_{ij}e^{u_j}\tag{1} \] in \({\mathbb R}^2\) for \(i=1,2,\cdots ,N\in \mathbb N\), where \(K=(a_{ij})_{N\times N}\) is the Cartan matrix in SU(N+1). It is shown that any \(C^2\)-solution \(u=(u_1,u_2,\cdots ,u_N)\) of (1) satisfying \(\int \limits_{{\mathbb R}^2}e^{u_i}<\infty\), \(i=1,2,\dots ,N\) has the form \[ u_i(z)=\sum \limits_{j=1}^Na_{ij}\log \|\Lambda_j(f)\|^2 \] for some rational curve in \(\mathbb{C}\mathbb{P}^N\). The analytic and geometric aspects of the Toda system are also presented. Reviewer: Michal Fečkan (Bratislava) Cited in 3 ReviewsCited in 34 Documents MSC: 35J60 Nonlinear elliptic equations 35Q53 KdV equations (Korteweg-de Vries equations) Keywords:Toda system; rational curve; holonomy PDF BibTeX XML Cite \textit{J. Jost} and \textit{G. Wang}, Int. Math. Res. Not. 2002, No. 6, 277--290 (2002; Zbl 1001.35037) Full Text: DOI