×

Localization of the Riemann-Roch character. (English) Zbl 1001.53062

The Guillemin-Sternberg conjecture [V. Guillemin and S. Sternberg, Invent. Math. 67, 515-538 (1982; Zbl 0503.58018)] about the commutativity of geometric quantization and symplectic reduction, was proved by E. Meinrenken [Adv. Math. 134, 240-277 (1998; Zbl 0929.53045)] and Y. Tian and W. Zhang [Invent. Math. 132, 229-259 (1998; Zbl 0944.53047)].
The present paper gives a \(K\)-theoretic approach to this conjecture, which provides a new proof of results obtained by Meinrenken and Tian-Zhang. Also, this new approach leads to a generalization for compact Lie group actions on manifolds that are not symplectic.

MSC:

53D50 Geometric quantization
55R50 Stable classes of vector space bundles in algebraic topology and relations to \(K\)-theory

References:

[1] Atiyah, M. F., Elliptic Operators and Compact Groups. Elliptic Operators and Compact Groups, Lecture Notes in Mathematics, 401 (1974), Springer-Verlag: Springer-Verlag Berlin · Zbl 0297.58009
[2] Atiyah, M. F., Convexity and commuting hamiltonians, Bull. London Math. Soc., 14, 1-15 (1982) · Zbl 0482.58013
[3] Atiyah, M. F.; Segal, G. B., The index of elliptic operators II, Ann. Math., 87, 531-545 (1968) · Zbl 0164.24201
[4] Atiyah, M. F.; Singer, I. M., The index of elliptic operators I, Ann. Math., 87, 484-530 (1968) · Zbl 0164.24001
[5] Atiyah, M. F.; Singer, I. M., The index of elliptic operators III, Ann. Math., 87, 546-604 (1968) · Zbl 0164.24301
[6] Atiyah, M. F.; Singer, I. M., The index of elliptic operators IV, Ann. Math., 93, 139-141 (1971) · Zbl 0212.28603
[7] Atiyah, M. F.; Hirzebruch, F., Spin Manifold and group actions, (Haefliger, A.; Narasimhan, R., Essays on Topology and Related Topics (Geneva 1969) (1970), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0193.52401
[8] N. Bourbaki, Eléments de mathématiques, in, Groupes et Algèbres de Lie, Chapitre 9, Masson, Paris.; N. Bourbaki, Eléments de mathématiques, in, Groupes et Algèbres de Lie, Chapitre 9, Masson, Paris. · Zbl 0213.04103
[9] L. Boutet de Monvel, Opérateurs pseudo-différentiels et formule de l’indice, Cours de D.E.A. à l’université de Nice, Année, 1970-1971.; L. Boutet de Monvel, Opérateurs pseudo-différentiels et formule de l’indice, Cours de D.E.A. à l’université de Nice, Année, 1970-1971.
[10] Berline, N.; Getzler, E.; Vergne, M., Heat Kernels and Dirac Operators (1991), Springer-Verlag: Springer-Verlag Berlin
[11] Berline, N.; Vergne, M., The Chern character of a transversally elliptic symbol and the equivariant index, Invent. Math., 124, 11-49 (1996) · Zbl 0847.46037
[12] Berline, N.; Vergne, M., L’indice équivariant des opérateurs transversalement elliptiques, Invent. Math., 124, 51-101 (1996) · Zbl 0883.58037
[13] Cannas da Silva, A.; Karshon, Y.; Tolman, S., Quantization of presymplectic manifolds and circle actions, Trans. Amer. Math. Soc., 352, 525-552 (2000) · Zbl 0977.53080
[14] Duistermaat, J. J., The heat equation and the Lefschetz fixed point formula for the \(Spin^c\)-Dirac operator, Progress in Nonlinear Differential Equation and Their Applications (1996), Birkhäuser: Birkhäuser Boston · Zbl 0858.58045
[15] Ginzburg, V. L.; Guillemin, V.; Karshon, Y., Assignments and astract moment maps, J. Differential Geom., 52, 259-301 (1999) · Zbl 0977.53078
[16] Guillemin, V.; Sternberg, S., Convexity properties of the moment mapping, Invent. Math., 67, 491-513 (1982) · Zbl 0503.58017
[17] Guillemin, V.; Sternberg, S., Geometric quantization and multiplicities of group representations, Invent. Math., 67, 515-538 (1982) · Zbl 0503.58018
[18] Guillemin, V.; Sternberg, S., A normal form for the moment map, (Sternberg, S., Differential Geometric Methods in Mathematical Physics (1984), Reidel: Reidel Dordrecht) · Zbl 0561.58015
[19] Jeffrey, L.; Kirwan, F., Localization and quantization conjecture, Topology, 36, 647-693 (1997) · Zbl 0876.55007
[20] Karshon, Y., Moment map and non-compact cobordism, J. Diff. Geometry, 49, 183-201 (1998) · Zbl 0920.57010
[21] Kawasaki, T., The index of elliptic operators over V-manifolds, Nagoya Math. J., 84, 135-157 (1981) · Zbl 0437.58020
[22] Kirwan, F., Cohomology of Quotients in Symplectic and Algebraic Geometry (1984), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0553.14020
[23] Kirwan, F., Convexity properties of the moment mapping III, Invent. Math., 77, 547-552 (1984) · Zbl 0561.58016
[24] Kostant, B., Quantization and unitary representations, Modern Analysis and Applications. Modern Analysis and Applications, Lecture Notes in Mathematics, 170 (1970), Springer-Verlag: Springer-Verlag Berlin, p. 87-207 · Zbl 0213.00101
[25] Lawson, H.; Michelsohn, M.-L., Spin geometry. Spin geometry, Princeton Math. Series, 38 (1989), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0688.57001
[26] Lerman, E.; Meinrenken, E.; Tolman, S.; Woodward, C., Non-Abelian convexity by symplectic cuts, Topology, 37, 245-259 (1998) · Zbl 0913.58023
[27] McDuff, D.; Salamon, D., Introduction to Symplectic Topology. Introduction to Symplectic Topology, Oxford Mathematical Monographs (1995), Clarendon Press: Clarendon Press Oxford · Zbl 0844.58029
[28] Meinrenken, E., On Riemaan-Roch formulas for multiplicities, J. Amer. Math. Soc., 9, 373-389 (1996) · Zbl 0851.53020
[29] Meinrenken, E., Symplectic surgery and the \(Spin^c\)-Dirac operator, Adv. Math., 134, 240-277 (1998) · Zbl 0929.53045
[30] Meinrenken, E.; Sjamaar, R., Singular reduction and quantization, Topology, 38, 699-762 (1999) · Zbl 0928.37013
[31] Paradan, P.-E., Formules de localisation en cohomologie équivariante, Compositio Mathematica, 117, 243-293 (1999) · Zbl 0934.55006
[32] Paradan, P.-E., The moment map and equivariant cohomology with generalized coefficient, Topology, 39, 401-444 (2000) · Zbl 0941.37050
[33] H. Schröder, On the definition of geometric Dirac operators, arXiv:math.DG/0005239.; H. Schröder, On the definition of geometric Dirac operators, arXiv:math.DG/0005239.
[34] Segal, G., Equivariant K-theory, Publ. Math. IHES, 34, 129-151 (1968) · Zbl 0199.26202
[35] Tian, Y.; Zhang, W., An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg, Invent. Math., 132, 229-259 (1998) · Zbl 0944.53047
[36] Tian, Y.; Zhang, W., Holomorphic Morse inequalities in singular reduction, Math. Res. Lett., 5, 345-352 (1998) · Zbl 0909.53020
[37] Vergne, M., Geometric quantization and equivariant cohomology, First European Congress in Mathematics, Vol. 1, Progress in Mathematics (1994), Birkhäuser: Birkhäuser Boston, p. 249-295 · Zbl 0827.58020
[38] Vergne, M., Multiplicity formula for geometric quantization, Part I, Part II, and Part III, Duke Math. J., 82, 143-179 (1996) · Zbl 0855.58033
[39] Witten, E., Two dimensional gauge theories revisited, J. Geom. Phys., 9, 303-368 (1992) · Zbl 0768.53042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.