zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multifractal detrended fluctuation analysis of nonstationary time series. (English) Zbl 1001.62029
Summary: We develop a method for the multifractal characterization of nonstationary time series, which is based on a generalization of the detrended fluctuation analysis (DFA). We relate our multifractal DFA method to the standard partition function - based multifractal formalism, and prove that both approaches are equivalent for stationary signals with compact support. By analyzing several examples we show that the new method can reliably determine the multifractal scaling behavior of time series. By comparing the multifractal DFA results for original series with those for shuffled series we can distinguish multifractality due to long-range correlations from multifractality due to a broad probability density function. We also compare our results with the wavelet transform modulus maxima method, and show that the results are equivalent.

62M10Time series, auto-correlation, regression, etc. (statistics)
37M10Time series analysis (dynamical systems)
Full Text: DOI
[1] Peng, C. -K.; Buldyrev, S. V.; Havlin, S.; Simons, M.; Stanley, H. E.; Goldberger, A. L.: Phys. rev. E. 49, 1685 (1994)
[2] Ossadnik, S. M.; Buldyrev, S. B.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Peng, C. -K.; Simons, M.; Stanley, H. E.: Biophys. J.. 67, 64 (1994)
[3] Taqqu, M. S.; Teverovsky, V.; Willinger, W.: Fractals. 3, 785 (1995)
[4] Kantelhardt, J. W.; Koscielny-Bunde, E.; Rego, H. H. A.; Havlin, S.; Bunde, A.: Physica A. 295, 441 (2001)
[5] Hu, K.; Ivanov, P. Ch.; Chen, Z.; Carpena, P.; Stanley, H. E.: Phys. rev. E. 64, 011114 (2001)
[6] Chen, Z.; Ivanov, P. Ch.; Hu, K.; Stanley, H. E.: Phys. rev. E. 65, 041107 (2002)
[7] Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Matsa, M. E.; Peng, C. -K.; Simons, M.; Stanley, H. E.: Phys. rev. E. 51, 5084 (1995)
[8] Buldyrev, S. V.; Dokholyan, N. V.; Goldberger, A. L.; Havlin, S.; Peng, C. -K.; Stanley, H. E.; Viswanathan, G. M.: Physica A. 249, 430 (1998)
[9] Peng, C. -K.; Havlin, S.; Stanley, H. E.; Goldberger, A. L.: Chaos. 5, 82 (1995)
[10] Ivanov, P. Ch.; Bunde, A.; Amaral, L. A. N.; Havlin, S.; Fritsch-Yelle, J.; Baevsky, R. M.; Stanley, H. E.; Goldberger, A. L.: Europhys. lett.. 48, 594 (1999)
[11] Ashkenazy, Y.; Lewkowicz, M.; Levitan, J.; Havlin, S.; Saermark, K.; Moelgaard, H.; Thomsen, P. E. B.; Moller, M.; Hintze, U.; Huikuri, H. V.: Europhys. lett.. 53, 709 (2001)
[12] Ashkenazy, Y.; Ivanov, P. Ch.; Havlin, S.; Peng, C. -K.; Goldberger, A. L.; Stanley, H. E.: Phys. rev. Lett.. 86, 1900 (2001)
[13] Bunde, A.; Havlin, S.; Kantelhardt, J. W.; Penzel, T.; Peter, J. -H.; Voigt, K.: Phys. rev. Lett.. 85, 3736 (2000)
[14] Blesic, S.; Milosevic, S.; Stratimirovic, D.; Ljubisavljevic, M.: Physica A. 268, 275 (1999)
[15] Bahar, S.; Kantelhardt, J. W.; Neiman, A.; Rego, H. H. A.; Russell, D. F.; Wilkens, L.; Bunde, A.; Moss, F.: Europhys. lett.. 56, 454 (2001)
[16] Hausdorff, J. M.; Mitchell, S. L.; Firtion, R.; Peng, C. -K.; Cudkowicz, M. E.; Wei, J. Y.; Goldberger, A. L.: J. appl. Physiol.. 82, 262 (1997)
[17] Koscielny-Bunde, E.; Bunde, A.; Havlin, S.; Roman, H. E.; Goldreich, Y.; Schellnhuber, H. -J.: Phys. rev. Lett.. 81, 729 (1998)
[18] Ivanova, K.; Ausloos, M.: Physica A. 274, 349 (1999)
[19] Talkner, P.; Weber, R. O.: Phys. rev. E. 62, 150 (2000)
[20] Ivanova, K.; Ausloos, M.; Clothiaux, E. E.; Ackerman, T. P.: Europhys. lett.. 52, 40 (2000)
[21] Malamud, B. D.; Turcotte, D. L.: J. stat. Plan. infer.. 80, 173 (1999)
[22] Alados, C. L.; Huffman, M. A.: Ethnology. 106, 105 (2000)
[23] Mantegna, R. N.; Stanley, H. E.: An introduction to econophysics. (2000) · Zbl 1138.91300
[24] Liu, Y.; Gopikrishnan, P.; Cizeau, P.; Meyer, M.; Peng, C. -K.; Stanley, H. E.: Phys. rev. E. 60, 1390 (1999)
[25] Vandewalle, N.; Ausloos, M.; Boveroux, P.: Physica A. 269, 170 (1999)
[26] Kantelhardt, J. W.; Berkovits, R.; Havlin, S.; Bunde, A.: Physica A. 266, 461 (1999)
[27] Vandewalle, N.; Ausloos, M.; Houssa, M.; Mertens, P. W.; Heyns, M. M.: Appl. phys. Lett.. 74, 1579 (1999)
[28] Feder, J.: Fractals. (1988) · Zbl 0648.28006
[29] Barabási, A. -L.; Vicsek, T.: Phys. rev. A. 44, 2730 (1991)
[30] Peitgen, H. -O.; Jürgens, H.; Saupe, D.: Chaos and fractals. (1992) · Zbl 0779.58004
[31] Bacry, E.; Delour, J.; Muzy, J. F.: Phys. rev. E. 64, 026103 (2001)
[32] Muzy, J. F.; Bacry, E.; Arneodo, A.: Phys. rev. Lett.. 67, 3515 (1991)
[33] Muzy, J. F.; Bacry, E.; Arneodo, A.: Int. J. Bifurcat. chaos. 4, 245 (1994)
[34] Arneodo, A.; Bacry, E.; Graves, P. V.; Muzy, J. F.: Phys. rev. Lett.. 74, 3293 (1995)
[35] Arneodo, A.: A.bundej.kropph.-j.schellnhuber the science of disaster: climate disruptions, market crashes, and heart attacks. The science of disaster: climate disruptions, market crashes, and heart attacks, 27-102 (2002)
[36] Ivanov, P. Ch.; Amaral, L. A. N.; Goldberger, A. L.; Havlin, S.; Rosenblum, M. G.; Struzik, Z. R.; Stanley, H. E.: Nature. 399, 461 (1999)
[37] Amaral, L. A. N.; Ivanov, P. Ch.; Aoyagi, N.; Hidaka, I.; Tomono, S.; Goldberger, A. L.; Stanley, H. E.; Yamamoto, Y.: Phys. rev. Lett.. 86, 6026 (2001)
[38] Arneodo, A.; Decoster, N.; Roux, S. G.: Eur. phys. J. B. 15, 567, 739, and 765 (2000)
[39] Silchenko, A.; Hu, C. K.: Phys. rev. E. 63, 041105 (2001)
[40] Makse, H. A.; Havlin, S.; Schwartz, M.; Stanley, H. E.: Phys. rev. E. 53, 5445 (1996)
[41] Arneodo, A.; Bacry, E.; Muzy, J. F.: J. math. Phys.. 39, 4142 (1998)
[42] Arneodo, A.; Manneville, S.; Muzy, J. F.: Europhys. J. B. 1, 129 (1998)
[43] Y. Ashkenazy, S. Havlin. P.Ch. Ivanov, C.K. Peng, V. Schulte-Frohlinde, H.E. Stanley, unpublished (cond-mat/0111396).
[44] Shlesinger, M. F.; West, B. J.; Klafter, J.: Phys. rev. Lett.. 58, 1100 (1987)
[45] S. Havlin, Y. Ben Avraham, Diffusion and Reactions in Fractals and Disordered Systems, Cambridge University Press, Cambridge, 2000, p. 48, and references therein. · Zbl 1075.82001
[46] N. Scafetta, P. Grigolini, unpublished (cond-mat/0202008).
[47] Jaffard, S.: Probab. theory relat.. 114, 207 (1999)
[48] Nakao, H.: Phys. lett. A. 266, 282 (2000)