×

Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. (English) Zbl 1001.65125

Summary: We prove that a discrete maximum principle holds for continuous piecewise linear finite element approximations for the Poisson equation with the Dirichlet boundary condition also under a condition of the existence of some obtuse internal angles between faces of terahedra of triangulations of a given space domain. This result represents a weakened form of the acute type condition for the three-dimensional case.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Enrico Bertolazzi, Discrete conservation and discrete maximum principle for elliptic PDEs, Math. Models Methods Appl. Sci. 8 (1998), no. 4, 685 – 711. · Zbl 0939.65123
[2] James H. Bramble and Bert E. Hubbard, New monotone type approximations for elliptic problems, Math. Comp. 18 (1964), 349 – 367. · Zbl 0124.33006
[3] Philippe G. Ciarlet, Discrete maximum principle for finite-difference operators, Aequationes Math. 4 (1970), 338 – 352. · Zbl 0198.14601
[4] P. G. Ciarlet and P.-A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg. 2 (1973), 17 – 31. · Zbl 0251.65069
[5] Miloslav Feistauer, Jiří Felcman, Mirko Rokyta, and Zdeněk Vlášek, Finite-element solution of flow problems with trailing conditions, J. Comput. Appl. Math. 44 (1992), no. 2, 131 – 165. · Zbl 0766.76049
[6] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin-New York, 1977. Grundlehren der Mathematischen Wissenschaften, Vol. 224. · Zbl 0361.35003
[7] Golias, N. A., Tsiboukis, T. D., An approach to refining three-dimensional tetrahedral meshes based on Delaunay transformations, Internat. J. Numer. Methods Engrg. 37 (1994), 793-812. CMP 94:08 · Zbl 0796.73061
[8] W. Höhn and H.-D. Mittelmann, Some remarks on the discrete maximum-principle for finite elements of higher order, Computing 27 (1981), no. 2, 145 – 154 (English, with German summary). · Zbl 0449.65075
[9] Michal Křížek, An equilibrium finite element method in three-dimensional elasticity, Apl. Mat. 27 (1982), no. 1, 46 – 75 (English, with Czech summary). With a loose Russian summary. · Zbl 0488.73072
[10] M. Křížek and L. Qun, On diagonal dominance of stiffness matrices in 3D, East-West J. Numer. Math. 3 (1995), no. 1, 59 – 69. · Zbl 0824.65112
[11] Michal Křížek and Theofanis Strouboulis, How to generate local refinements of unstructured tetrahedral meshes satisfying a regularity ball condition, Numer. Methods Partial Differential Equations 13 (1997), no. 2, 201 – 214. , https://doi.org/10.1002/(SICI)1098-2426(199703)13:23.0.CO;2-T · Zbl 0879.65078
[12] Maria Elizabeth G. Ong, Uniform refinement of a tetrahedron, SIAM J. Sci. Comput. 15 (1994), no. 5, 1134 – 1144. · Zbl 0807.65123
[13] Santos, V. R., On the strong maximum principle for some piecewise linear finite element approximate problems of nonpositive type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 473-491. · Zbl 0488.65052
[14] Guido Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc. 1, 189 – 258 (French). · Zbl 0151.15401
[15] G. Stoyan, On a maximum principle for matrices, and on conservation of monotonicity. With applications to discretization methods, Z. Angew. Math. Mech. 62 (1982), no. 8, 375 – 381 (English, with German and Russian summaries). · Zbl 0501.65011
[16] Gisbert Stoyan, On maximum principles for monotone matrices, Linear Algebra Appl. 78 (1986), 147 – 161. · Zbl 0587.15014
[17] Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. · Zbl 0356.65096
[18] Richard S. Varga, Matrix iterative analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. · Zbl 0998.65505
[19] Shangyou Zhang, Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes, Houston J. Math. 21 (1995), no. 3, 541 – 556. · Zbl 0855.65124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.