zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Richardson extrapolation of iterated discrete Galerkin solution for two-dimensional Fredholm integral equations. (English) Zbl 1001.65142
The authors study the numerical solution of the two-dimensional Fredholm integral equations for a class by discrete Galerkin and iterated discrete Galerkin methods. An example is illustrated.

65R20Integral equations (numerical methods)
45G10Nonsingular nonlinear integral equations
Full Text: DOI
[1] Anselone, P. M.: Collectively compact operator approximation theory. (1971) · Zbl 0228.47001
[2] Atkinson, K. E.: A survey of numerical methods for solving nonlinear integral equations. J. integral equations appl. 4, 15-46 (1992) · Zbl 0760.65118
[3] Atkinson, K. E.: The numerical solution of integral equations of the second kind. (1997) · Zbl 0899.65077
[4] Atkinson, K. E.: A. bogomolny, the discrete Galerkin method for integral equations. Math. comp. 48, 595-616 (1987) · Zbl 0633.65134
[5] Atkinson, K. E.; Potra, F. A.: The discrete Galerkin method for nonlinear integral equations. J. integral equations appl. 1, 17-54 (1988) · Zbl 0664.65056
[6] Baker, C. T.: The numerical treatment of integral equations. (1977) · Zbl 0373.65060
[7] Chen, Z. G.; Xu, Y. S.: The Petrov--Galerkin and iterated Petrov--Galerkin methods for second-kind integral equations. SIAM J. Numer. anal. 35, 406-434 (1998) · Zbl 0911.65143
[8] Delves, L. M.; Mohamed, J. L.: Computational methods for integral equations. (1985) · Zbl 0592.65093
[9] Hackbusch, W.: Integral equations theory and numerical treatment. (1995) · Zbl 0823.65139
[10] Han, G. Q.: Asymptotic error expansion of the Nyström method for nonlinear Fredholm integral equations of the second kind. Bit 34, 254-261 (1994) · Zbl 0809.65136
[11] Hildebrand, F. B.: Introduction to numerical analysis. (1974) · Zbl 0279.65001
[12] Lin, Q.; Sloan, I. H.; Xie, R.: Extrapolation of the iterated collocation method for integral equations of the second kind. SIAM J. Numer. anal. 27, 1535-1541 (1990) · Zbl 0724.65128
[13] Marchuk, G. I.; Shaidurov, V. V.: Difference methods and their extrapolations. (1983) · Zbl 0511.65076
[14] Mclean, W.: Asymptotic error expansions for numerical solutions of integral equations. IMA J. Numer. anal. 9, 373-384 (1989) · Zbl 0683.65115