×

Stabilized finite element methods with shock capturing for advection-diffusion problems. (English) Zbl 1001.76058

Summary: Stabilized FEM of streamline-diffusion type for advection-diffusion problems may exhibit local oscillations in crosswind direction(s). As a remedy, we consider a shock-capturing variant of such stabilized schemes as an additional consistent (but nonlinear) stabilization. We prove existence of discrete solutions. Then we present some a priori and a posteriori estimates. Finally, we address the efficient solution of arising nonlinear discrete problems.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76R99 Diffusion and convection
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Achchab, B; Agouzal, A; Baranger, J; Maitre, J.F, A posteriori error estimates in finite element methods for general Friedrichs’ systems, Comp. meth. appl. mech. engrg., 184, 39-47, (2000) · Zbl 0964.65121
[2] Codina, R, A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection – diffusion equation, Comp. meth. appl. mech. engrg., 110, 325-342, (1993) · Zbl 0844.76048
[3] Codina, R, Stabilization of incompressibility and convection through orthogonal subscales in finite element methods, Comp. meth. appl. mech. engrg., 190, 13/14, 1579-1599, (2000) · Zbl 0998.76047
[4] Codina, R; Soto, O, Finite element implementation of two-equation and algebraic stress turbulence models for steady incompressible flows, Int. J. numer. meth. fluids, 90, 3, 309-343, (1999) · Zbl 0948.76036
[5] Devinatz, A; Friedman, A, The asymptotic behavior of the solution of a singularly perturbed Dirichlet problem, Indiana univ. math. J., 27, 3, 527-537, (1978) · Zbl 0395.35020
[6] Franca, L.P; Frey, S.L; Hughes, T.J.R, Stabilized finite element methods: I. application to the advective – diffusive model, Comp. meth. appl. mech. engrg., 95, 253-276, (1992) · Zbl 0759.76040
[7] Franca, L.P; Valentin, F, On an improved unusual stabilized finite element method for the advective – reactive – diffusive equation, Comp. meth. appl. mech. engrg., 190, 1785-1806, (2000) · Zbl 0976.76038
[8] Galeao, A.C; Dutra de Carmo, E.G, A consistent approximate upwind petrov – galerkin method for convection-dominatedproblems problems, Comp. meth. appl. mech. engrg., 68, 83-95, (1988) · Zbl 0626.76091
[9] Hangleiter, R; Lube, G, Stabilized Galerkin methods and layer-adapted grids for elliptic problems, Comp. meth. appl. mech. engrg., 166, 165-182, (1998) · Zbl 0951.65118
[10] Houston, R; Rannacher, R; Süli, E, A posteriori error analysis for stabilised finite element approximations of transport equations, Comp. meth. appl. mech. engrg., 190, 11/12, 1483-1508, (2000) · Zbl 0970.65115
[11] Johnson, C; Schatz, A.H; Wahlbin, L.B, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. comput., 49, 179, 25-38, (1984) · Zbl 0629.65111
[12] Kellogg, B, Uniqueness in the Schauder fixed point theorem, Proc. am. math. soc., 60, 207-210, (1976) · Zbl 0352.47025
[13] B. Kellogg, Personal communication, June 2001
[14] T. Knopp et al., A non-overlapping DDM for the non-isothermal k/ϵ-turbulence model, Proc. Int. Conf. Finite Element Meth. 3D-Problems, Jyväskulä 2000, in press
[15] Layton, W; Polman, B, Oscillation absorption finite element methods for convection – diffusion problems, SIAM sci comput., 17, 6, 1328-1346, (1996) · Zbl 0860.65112
[16] Lube, G, An asymptotically fitted finite element method for convection-dominated convection – diffusion-reaction problems, Zamm, 72, 189-200, (1992) · Zbl 0772.65072
[17] G. Lube, Stabilized Galerkin finite element methods for convection dominated and incompressible flow problems, Banach Center Public., vol. 29, Inst. Math., Polish Acad. Sc., Warszawa 1994 · Zbl 0801.76046
[18] Roos, H.G; Stynes, M; Tobiska, L, Numerical methods for singularly perturbed differential equations, (1996), Springer Heidelberg
[19] G. Sangalli, A robust a posteriori estimator for the residual-free bubbles method applied to advection – diffusion problems, Oxford University Computing Laboratory, Report no. 99/20 · Zbl 1026.65089
[20] Sangalli, G, Global and local error analysis for the residual-free bubbles method applied to advection-dominated problems, SIAM J. numer. anal., 38, 1496-1522, (2000) · Zbl 0988.65106
[21] Shih, Y.-T; Elman, H.C, Modified streamline diffusion schemes for convection – diffusion problems, Comput. meth. appl. mech. engrg., 174, 137-151, (1999) · Zbl 0957.76035
[22] Shih, Y.-T; Elman, H.C, Iterative methods for stabilized discrete convection – diffusion problems, IMA J. numer. anal., 20, 333-358, (2000) · Zbl 0980.65127
[23] Szepessy, A, Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two dimensions, Math. comp., 53, 527-545, (1989) · Zbl 0679.65072
[24] Temam, R, Navier – stokes equations, theory and numerical analysis, (1979), North-Holland Amsterdam · Zbl 0426.35003
[25] Verfürth, R, A posteriori error estimators for convection – diffusion equations, Numer. math., 80, 641-663, (1998) · Zbl 0913.65095
[26] Zhou, G; Rannacher, R, Pointwise superconvergence of the streamline diffusion finite element method, Numer. meth. part. diff. equat., 12, 123-145, (1996) · Zbl 0841.65092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.