The localization of surface states: an exactly solvable model. (English) Zbl 1001.82526

Summary: We discuss the discrete Schrödinger operator \(H=-\Delta+V\) with surface potential: \(V\) as a function of lattice point vanishes outside a surface. In general, the operator has surface eigenstates, i.e. eigenfunctions decreasing with distance away from the surface. We show that for a particular case of strongly incommensurate surface potential, all surface states with energies in the exterior of the spectrum of the free operator \(-\Delta\) are exponentially localized in all directions. The corresponding centers of localization are uniformly distributed on the surface and the set of surface energies is everywhere dense in the exterior of the free spectrum. We find explicitly these surface energies and their density (the density of surface states). We also discuss Lifshitz’s approach to studying the low-dimensional perturbations which is an important ingredient of our calculation.


82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
82B23 Exactly solvable models; Bethe ansatz
Full Text: DOI


[1] Rayleigh, Lord, (Proc. London Math. Soc., 17 (1887)), 4
[2] Rayleigh, Lord, The Theory of Sound (1945), Dover: Dover New York · JFM 25.1604.01
[3] Love, A. E.H., A Treatise on the Mathematical Theory of Elasticity (1944), Dover: Dover New York · Zbl 0063.03651
[4] Garcia-Moloner, F.; Flores, F., Introduction to the Theory of Solid Surfaces (1979), Cambridge University Press: Cambridge University Press Cambridge
[5] (Agranovich, V. M.; Mills, D. L., Surface Polaritons: Electromagnetic Waves at Surfaces and Intersurfaces (1982), North-Holland: North-Holland Amsterdam)
[6] (Agranovich, V. M.; Loudon, R., Surface Excitations (1984), North-Holland: North-Holland Amsterdam)
[7] (Nizzoli, F.; Reiter, K.; Mills, D. L., Dynamical Phenomena at Surfaces, Intersurfaces and Superlattices (1985), Springer: Springer Berlin)
[8] (Wallis, R. F.; Stegeman, G. I., Electromagnetic Surface Excitations (1986), Springer: Springer Berlin)
[9] (Kress, W.; de Wette, F. W., Surfaces Phonons (1991), Springer: Springer Berlin)
[10] Biryukov, S. W.; Gulyaev, Yu. V.; Krylov, V. V.; Pre, V. P., Surface Acoustic Waves in Inhomogeneous Media (1993), Springer: Springer Berlin
[11] Mönch, W., Semiconductor Surfaces and Interfaces (1995), Springer: Springer Berlin · Zbl 0994.82100
[12] Lifshitz, I. M., Dokl. Akad. Nauk SSSR, 48, 83 (1945), (in Russian)
[13] Lifshitz, I. M., JETP Lett., 18, 1012 (1948), (in Russian)
[14] Lifshitz, I. M.; Rozenzveig, L. N., JETP Lett., 18, 1012 (1948), (in Russian)
[15] Lifshitz, I. M.; Obreimov, I. V., Izv. Akad. Nauk SSSR Ser. Fiz., 12, 655 (1948), (in Russian)
[16] Lifshitz, I. M.; Rozenzveig, L. N., Izv. Akad. Nauk SSSR Ser. Fiz., 12, 667 (1948), (in Russian)
[17] Lifshitz, I. M., Uspekhi Mat. Nauk, 7, 170 (1952), (in Russian)
[18] Lifshitz, I. M.; Pekar, S. I., Uspekhi Fiz. Nauk, 56, 531 (1955), (in Russian)
[19] Lifshitz, I. M., Nuovo Cimento Suppl., 3, 716 (1964)
[20] Lifshitz, I. M.; Kosevich, A. M., Rep. Prog. Phys., 20, 217 (1964)
[21] Landau, L. D.; Lifshitz, E. M., Quantum Mechanics (1958), Pergamon Press: Pergamon Press London · Zbl 0081.22207
[22] Aizenmann, M.; Molchanov, S., Commun. Math. Phys., 157, 245 (1993)
[23] Grinshpun, V. Z., Lett. Math. Phys., 34, 103 (1995)
[24] Grempel, D. R.; Fishman, S.; Prange, R. E., Phys. Rev. Lett., 49, 833 (1982)
[25] Fishman, S.; Grempel, D. R.; Prange, R. E., Phys. Rev., B 29, 4272 (1984)
[26] Figotin, A. L.; Pastur, L. A., Commun. Math. Phys., 95, 401 (1994)
[27] Simon, B., Ann. Phys., 159, 157 (1995)
[28] Lifshitz, I. M., Uspekhi Fiz. Nauk, 83, 617 (1964), (in Russian)
[29] Lifshitz, I. M., Sov. Phys. JETP, 26, 462 (1967)
[30] Fröhlich, J.; Spencer, T., Commun. Math. Phys., 88, 151 (1983)
[31] Efros, A. L.; Shklovsky, B. I., Electronic Properties of Doped Semi-Conductors (1984), Springer: Springer Berlin
[32] Carmona, R.; Lacroix, J., Spectral Theory of Random Schrödinger Operator (1990), Birkhauser: Birkhauser Boston
[33] Pastur, L. A.; Figotin, A. L., Spectra of Random and Almost Periodic Operators (1992), Springer: Springer Berlin · Zbl 0723.47001
[34] Birman, M. Sh.; Yafaev, D. R., St. Petersburg Math. J., 4, 833 (1993)
[35] Lifshitz, I. M.; Gredeskul, S. A.; Pastur, L. A., Introduction in the Theory of Disordered Systems (1988), Wiley: Wiley New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.