×

Lower bounds for normalized heights of subvarieties of tori. (Minorations des hauteurs normalisées des sous-variétés des tores.) (French) Zbl 1002.11055

In a previous paper [Minorations des hauteurs normalisées des sous-variétés de variétés abéliennes, Contemp. Math. 210, 333-364 (1998; Zbl 0899.11027)] the authors investigated algebraic subvarieties \(V\) of an abelian variety \(A\) over the field \({\overline{\mathbb Q}}\) of algebraic numbers. They showed that if \(V\) has a sufficiently small height (in terms of its degree), then \(V\) is a torsion subvariety of \(A\), namely a translate by a torsion point of an abelian subvariety of \(A\). As a consequence the set of points on \(V({\overline{\mathbb Q}})\) of small height is not Zariski dense in \(V\).
Here they consider a similar question for tori \(\mathbb{G}_{m}^{g}\). They produce explicit lower bounds for the height of an algebraic subvariety defined over \({\overline{\mathbb Q}}\) which is not a translate of an algebraic subgroup of \(\mathbb{G}_{m}^{g}\). The bounds depend only on the degree of \(V\). Next they prove that for an algebraic subvariety \(V\) of \(\mathbb{G}_{m}^{g}\) over \({\overline{\mathbb Q}}\), the set of points \(x\) in \(V({\overline{\mathbb Q}})\), which belong to no translate of an algebraic subgroup of dimension \(\geq 1\) contained in \(V\), and which have sufficiently small height \(\widehat{h}(x)\), is finite. The upper bounds, for \(\widehat{h}(x)\) in the hypothesis and for the number of points in the conclusion, are explicitly given; they depend only on \(g\) and on the degree of \(V\). Also they give a lower bound for the height \(\widehat{h}(x)\) of a point \(x\in V({\overline{\mathbb Q}})\) which does not belong to a torsion subvariety included in \(V\), assuming \(V\) is defined over \(\mathbb Q\) and is \(\mathbb Q\)-irreducible. This refines earlier estimates due to W. M. Schmidt [Heights of points on subvarieties of \(\mathbb G_{m}^{n}\), Contemp. Math. 210, 97-99 (1998; Zbl 0897.11021)]. In particular these new estimates do not depend on the height of \(V\).
For the proof they first reduce the question to planar curves in \(\mathbb{G}_{m}^{2}\). Next they prove a new explicit estimate for the arithmetic Hilbert function, where the remainder term is explicit; the proof of this estimate requires a new absolute Siegel lemma.

MSC:

11G35 Varieties over global fields
11G50 Heights
14G40 Arithmetic varieties and schemes; Arakelov theory; heights
11J81 Transcendence (general theory)
11J95 Results involving abelian varieties
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] A. Abbès - T. Bouche , Théorème de Hilbert-Samuel arithmétique , C. R. Acad. Sci. Paris Sér. I 317 ( 1993 ), 589 - 591 ; Ann. Inst. Fourier ( Grenoble ) 45 ( 1995 ), 375 - 401 . Numdam | MR 1343555 · Zbl 0796.14017
[2] F. Amoroso - S. David , Le problème de Lehmer en dimension supérieure , Università di Torino, Quaderni Dipart. Mat . 39 ( 1997 ), 37 pp.; J. Reine Angew. Math . À paraître. MR 1713323 | Zbl 1011.11045 · Zbl 1011.11045 · doi:10.1515/crll.1999.058
[3] F. Amoroso - S. David , Minoration de la hauteur normalisée des hypersurfaces , Università di Torino, Quaderni Dipart. Mat . 47 ( 1998 ), 34 pp.; Acta Arithmetica . À paraître. Zbl 0948.11025 · Zbl 0948.11025
[4] J.-B. Bost - H. Gillet - C. Soulé , Heights of projective varieties and positive Green forms , J. Amer. Math. Soc . ( 4 ) 7 ( 1994 ), 903 - 1022 . MR 1260106 | Zbl 0973.14013 · Zbl 0973.14013 · doi:10.2307/2152736
[5] E. Bombieri - J. Vaaler , On Siegel’s lemma , Invent. Math. 73 ( 1983 ), 11 - 32 . MR 707346 | Zbl 0533.10030 · Zbl 0533.10030 · doi:10.1007/BF01393823
[6] E. Bombieri - U. Zannier , Algebraic points on subvarieties of G nm , Internat. Math. Res. Notices 7 ( 1995 ), 333 - 347 . MR 1350686 | Zbl 0848.11030 · Zbl 0848.11030 · doi:10.1155/S1073792895000250
[7] E. Bombieri - U. Zannier , Heights of algebraic points on subvarieties of abelian varieties , Ann. Scuola Norm. Sup. Pisa, Cl. Sci. 23 ( 1997 ), 779 - 792 . Numdam | MR 1469574 | Zbl 0897.11020 · Zbl 0897.11020
[8] M. Chardin , Une majoration de la fonction de Hilbert et ses conséquences pour l’interpolation algébrique , Bull. Soc. Math. France 117 ( 1989 ), 305 - 318 . Numdam | MR 1020108 | Zbl 0709.13007 · Zbl 0709.13007
[9] M. Chardin - P. Philippon , Régularité et interpolation , J. Algebraic Geom. À paraître, 1998 . MR 1689351 | Zbl 0962.13014 · Zbl 0962.13014
[10] S. David - P. Philippon , Minorations des hauteurs normalisées des sous-variétés de variétés abeliennes , In: ” Number Theory, Tiruchirapalli 1996 ” V. K. MURTY- M. WALDSCHMIDT éditeurs, Contemp. Math . 210 ( 1997 ), pp. 333 - 364 . MR 1478502 | Zbl 0899.11027 · Zbl 0899.11027
[11] D. Eisenbud , ”Commutative Algebra with a View Toward Algebraic Geometry”, Graduate Text in Math . 150 , Springer-Verlag , Berlin - Heidelberg - New-York , 1995 . MR 1322960 | Zbl 0819.13001 · Zbl 0819.13001
[12] P. Griffiths - J. Harris , ” Principles of Algebraic Geometry ” , Wiley-Interscience , 1978 . MR 507725 | Zbl 0408.14001 · Zbl 0408.14001
[13] M. Laurent , Hauteur de matrices d’interpolation, In: ”Approximations Diophantiennes et Nombres Transcendants, Luminy 1990” , P. PHILIPPON éditeur, W. de Gruyter & Co. , Berlin - New York , 1992 , pp. 215 - 238 . MR 1176532 | Zbl 0773.11047 · Zbl 0773.11047
[14] W. Lawton , A generalisation of a theorem of Kronecker , J. Sci. Fac. Chiangmai Univ . 4 ( 1977 ), 15 - 23 . Zbl 0447.12004 · Zbl 0447.12004
[15] D.G. Northcott , ” Lessons on Rings, Modules and Multiplicities ”, Cambridge Univ. Press , 1968 . MR 231816 | Zbl 0159.33001 · Zbl 0159.33001
[16] P. Philippon , Sur des hauteurs alternatives I; II; III , Math. Ann. 289 ( 1991 ), 255 - 283 ; Ann. Inst. Fourier ( Grenoble ) ( 4 ) 44 ( 1994 ), 1043 - 1065 ; J. Math. Pures Appl . ( 4 ) 74 ( 1995 ), 345 - 365 . MR 1092175 · Zbl 0726.14017
[17] P. Philippon , ”Quatre exposés sur la théorie de l’élimination”, Publ. Lab. Math. Discrètes , C.I.R.M ., Luminy , 1994 .
[18] G. Rémond , ”Sur des problèmes d’effectivité en géométrie diophantienne” , Thèse, Univ. P. et M. Curie , 1997 .
[19] D. Roy - J.L. Thunder , An absolute Siegel’s lemma , J. Reine Angew. Math. 476 ( 1996 ), 1 - 26 . MR 1401695 | Zbl 0860.11036 · Zbl 0860.11036
[20] W.M. Schmidt , ” Diophantine Approximations and Diophantine Equations ”, Lecture Notes in Math . 1467 , Springer-Verlag , Berlin - Heidelberg - New-York , 1991 . MR 1176315 | Zbl 0754.11020 · Zbl 0754.11020 · doi:10.1007/BFb0098246
[21] W.M. Schmidt , Heights of Points on Subvarieties of G nm, In: ”Number Theory 93-94” , S. DAVID éditeur, London Math. Soc. Ser . 235 , Cambridge University Press , 1996 . MR 1628798 | Zbl 0917.11023 · Zbl 0917.11023
[22] E. Ullmo , Positivité et discrétion des points algébriques des courbes , Ann. of Math. ( 1 ) 147 ( 1996 ), 81 - 95 . MR 1609514 | Zbl 0934.14013 · Zbl 0934.14013 · doi:10.2307/120987
[23] P. Voutier , An effective lower bound for the height of algebraic numbers , Acta. Arith. ( 1 ) 74 ( 1998 ), 167 - 179 . Article | MR 1367580 | Zbl 0838.11065 · Zbl 0838.11065
[24] S. Zhang , Positive line bundles on arithmetic varieties , J. Amer. Math. Soc. ( 1 ) 8 ( 1995 ), 187 - 221 . MR 1254133 | Zbl 0861.14018 · Zbl 0861.14018 · doi:10.2307/2152886
[25] S. Zhang , Small points and adelic metrics , J. Algebraic Geom. 4 ( 1995 ), 281 - 300 . MR 1311351 | Zbl 0861.14019 · Zbl 0861.14019
[26] S. Zhang , Equidistribution of small points on abelian varieties , Ann. of Math. ( 1 ) 147 ( 1998 ), 159 - 165 . MR 1609518 | Zbl 0991.11034 · Zbl 0991.11034 · doi:10.2307/120986
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.