×

zbMATH — the first resource for mathematics

Formulae for the relative class number of an imaginary abelian field in the form of a determinant. (English) Zbl 1002.11079
Let \(K\) be an imaginary abelian number field with conductor \(m\) and Galois group \(G = \text{Gal} (K/ \mathbb Q)\). Since the result of L. Carlitz and F. R. Olson [Proc. Am. Math. Soc. 6, 265-269 (1955; Zbl 0065.02703)] on Maillet’s determinant, many papers investigated matrices over \(\mathbb Q\), whose determinant equals – up to a more or less known factor – \(h_K^-\), the minus part of the class number of \(K\). Usually, these matrices can be interpreted as transformations of lattices within the (minus part of the) rational group ring over \(G\). The characters of \(G\), being identified with Dirichlet characters, yield an orthogonal decomposition of the group ring and a factorization of the determinant into “generalized” Bernoulli numbers, which are connected to \(h_K^-\) by the analytic class number formula.
This paper starts with an overview of known results concerning Maillet’s determinant and Demyanenko’s matrix, which all can be obtained by specializing Theorem 1 of this paper, giving a formula for a very general determinant. More precisely, let \(\theta_n' \in \mathbb Q [G]\) be the Stickelberger element coming from level \(n \mid m\) and \(\theta\) be a linear combination of these elements with arbitrary coefficients from \(\mathbb Q [G]\). Then the determinant of Theorem 1 is essentially the index of the ideal generated by \(\theta\) within the imaginary part of the integral group ring over \(G\).
Reviewer: G.Lettl (Graz)

MSC:
11R29 Class numbers, class groups, discriminants
11R18 Cyclotomic extensions
11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers
Citations:
Zbl 0065.02703
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Tatra Mount. Math. Publ 11 pp 121– (1997)
[2] DOI: 10.1006/jnth.1995.1057 · Zbl 0829.11054
[3] DOI: 10.1016/0022-314X(90)90048-V · Zbl 0695.12004
[4] Introduction to cyclotomic fields (1982)
[5] Nagoya Math. J 94 pp 165– (1984) · Zbl 0535.12005
[6] Ann. Univ. Turku. Ser. A I 105 pp 15– (1967)
[7] Expositiones Math 10 pp 171– (1992)
[8] DOI: 10.1006/jnth.1996.0008 · Zbl 0840.11044
[9] Arch. Math. (Brno) 15 pp 209– (1979)
[10] (1952)
[11] Math. of Comp 61 pp 881– (1993)
[12] DOI: 10.1007/BF02941628 · Zbl 0779.11052
[13] Proceedings of Conference on Analytic and Elementary Number Theory pp 81– (1996)
[14] DOI: 10.1016/0022-314X(89)90100-5 · Zbl 0675.12002
[15] DOI: 10.1023/A:1000106427229 · Zbl 1044.11587
[16] DOI: 10.3792/pjaa.70.292 · Zbl 0829.11055
[17] Proc. Amer. Math. Soc 6 pp 265– (1955)
[18] Acta Arith 75 pp 235– (1996)
[19] DOI: 10.1016/0022-314X(84)90064-7 · Zbl 0535.12004
[20] DOI: 10.1006/jnth.1996.0113 · Zbl 0866.11063
[21] Sci. Papers Coll. Gen. Edu. Univ. Tokyo 32 pp 97– (1982)
[22] DOI: 10.1006/jnth.1996.0073 · Zbl 0861.11063
[23] pp 69– (1995)
[24] Acta Arith 39 pp 1– (1981)
[25] DOI: 10.1007/BF01389158 · Zbl 0465.12001
[26] DOI: 10.2307/1970932 · Zbl 0395.12014
[27] DOI: 10.1007/BF01199101 · Zbl 0807.11053
[28] DOI: 10.1016/0022-314X(90)90147-J · Zbl 0697.12003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.