Agarwal, Ravi P.; Lü, Haishen; O’Regan, Donal Eigenvalues and the one-dimensional \(p\)-Laplacian. (English) Zbl 1002.34019 J. Math. Anal. Appl. 266, No. 2, 383-400 (2002). The authors are concerned with determining values of \(\lambda\), for which there exist positive solutions to the boundary value problem \[ (\phi_p(u'))'+ \lambda F(t,u)= 0\quad\text{in }(0,1),\quad u(0)= u(1)= 0,\tag{P} \] with \(\phi_p(s)=|s|^{p-2}s\) and \(p> 1\). They provide conditions to guarantee that the set \(E= \{\lambda> 0\mid\text{(P)}\) has positive solutions} is a bounded interval or an unbounded interval. They give the explicit eigenvalue interval in terms of \[ f_0= \lim_{x\to 0^+} {f(x)\over x^{p- 1}}\quad\text{and}\quad f_\infty= \lim_{x\to\infty} {f(x)\over x^{p-1}}. \] Also, they show the existence of two positive solutions when \(\lambda\) in an appropriate interval. The proofs are based on the Guo-Krasnosel’skii fixed-point theorem in cones. Reviewer: Ruyun Ma (Lanzhou) Cited in 77 Documents MSC: 34B24 Sturm-Liouville theory 34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations 34B15 Nonlinear boundary value problems for ordinary differential equations 47H10 Fixed-point theorems 34L05 General spectral theory of ordinary differential operators 47J10 Nonlinear spectral theory, nonlinear eigenvalue problems Keywords:one-dimensional \(p\)-Laplacian; positive solutions; cone; fixed-point; eigenvalue PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., J. Math. Anal. Appl. 266, No. 2, 383--400 (2002; Zbl 1002.34019) Full Text: DOI OpenURL References: [1] Agarwal, R.P., Boundary value problems for higher order differential equations, (1986), World Scientific Singapore · Zbl 0598.65062 [2] Agarwal, R.P.; Akrivis, G., Boundary value problems occurring in plate deflection theory, J. comp. appl. math., 8, 145-154, (1982) · Zbl 0503.73061 [3] Agarwal, R.P.; O’Regan, D.; Wong, P.J.Y., Positive solution of differential, difference, and integral equations, (1999), Kluwer Dordrecht [4] Agarwal, R.P.; Wong, P.J.Y., On lidstone polynomials and boundary value problems, Comput. math. appl., 17, 1397-1421, (1998) · Zbl 0682.65049 [5] O’Regan, D., Singular second order boundary value problems, Nonlinear anal., 15, 1097-1109, (1990) · Zbl 0732.34021 [6] O’Regan, D., Some general existence principles and results for (φ(y′))′=qf(t,y,y′), 0<t<1, SIAM J. math. anal., 24, 648-668, (1993) · Zbl 0778.34013 [7] Baldwin, P., A localized instability in a Bénard layer, Appl. anal., 24, 117-156, (1987) · Zbl 0588.76076 [8] Boutayeb, A.; Twizell, E.H., Finite difference methods for the solution of eighth-order boundary-value problems, Int. J. comput. math., 48, 63-75, (1993) · Zbl 0820.65046 [9] Muhammad, A.N.; Tirmizi, S.L., Numerical methods for unilateral problems, J. comp. appl. math., 16, 387-395, (1986) · Zbl 0623.73120 [10] Twizell, E.H., Numerical methods for sixth-order boundary value problems, Int. ser. numer. math., 86, 495-506, (1988) · Zbl 0657.65105 [11] De Coster, C., Pairs of positive solutions for the one-dimensional p-Laplacian, Nonlinear anal., 23, 669-681, (1994) · Zbl 0813.34021 [12] del Pino, M.A.; Drábek, P.; Manásevich, R., The Fredholm alternative at the first eigenvalue for the one dimensional p-Laplancian, J. differential equations, 151, 386-419, (1999) · Zbl 0931.34065 [13] Manasevich, R.; Zanolin, F., Time-mappings and multiplicity of solutions for the one-dimensional p-Laplacian, Nonlinear. anal., 21, 269-291, (1993) · Zbl 0792.34021 [14] Wang, Junyu; Gao, Wenjie, A singular boundary value problem for the one-dimensional p-Laplacian, J. math. anal. appl., 201, 851-866, (1996) · Zbl 0860.34011 [15] Janus, J.; Myjak, J., A generalized Emden-Fowler equation with a negative exponent, Nonlinear anal., 23, 953-970, (1994) · Zbl 0819.34016 [16] Zuodong, Yang; Zongming, Guo, On the structure of positive solutions for quasilinear ordinary differential equatuions, Appl. anal., 58, 31-51, (1995) · Zbl 0834.34027 [17] Lü, Haishen; Zhong, Chengkui, A note on singular nonlinear boundary value problem for the one-dimensional p-Laplacian, Appl. math. lett., 14, 189-194, (2001) · Zbl 0981.34013 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.