zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global well-posedness for Schrödinger equations with derivative. (English) Zbl 1002.35113
Summary: We prove that the one-dimensional Schrödinger equation with derivative in the nonlinear term $$\align & i\partial_t u+\partial^2_x u=i\lambda\partial_x(|u|^2u),\\ & u(x,0)=u_0(x),\qquad x\in\bbfR,\ t\in\bbfR,\endalign$$ is globally well-posed in $H^{s}$ for $s>2/3$, for small $L^{2}$ data. The result follows from an application of the “I-method”. This method allows us to define a modification of the energy norm $H^{1}$ that is “almost conserved” and can be used to perform an iteration argument. We also remark that the same argument can be used to prove that any quintic nonlinear defocusing Schrödinger equation on the line is globally well-posed for large data in $H^{s}$, for $s>2/3.$

35Q55NLS-like (nonlinear Schrödinger) equations
35A05General existence and uniqueness theorems (PDE) (MSC2000)
Full Text: DOI