×

Asymptotic properties of solutions to nonautonomous Volterra difference systems with infinite delay. (English) Zbl 1002.39007

The authors show that under certain conditions there is a one-to-one correspondence between weighted bounded solutions of a linear nonautonomous Volterra difference system with infinite delay and its perturbed system. Under additional assumptions, this correspondence is elevated to asymptotic equivalence. On the other side, the authors prove the existence of weighted convergent solutions.

MSC:

39A11 Stability of difference equations (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Gopalsamy, K., Stability and oscillations in delay differential equations of population dynamics, (1992), Kluwer Academic · Zbl 0752.34039
[2] Hale, J.; Kato, J., Phase space for retarded equations with infinite delay, Funkcialaj ekvacioj, 21, 11-41, (1978) · Zbl 0383.34055
[3] Hale, J., Asymptotic behavior of dissipative system, Amer. math. soc., (1988), Providence, RI
[4] Henríquez, H., Periodic solutions of quasi-linear partial functional differential equations with unbounded delay, Funkcialaj ekvacioj, 37, 2, 329-343, (1994) · Zbl 0814.35141
[5] Liang, J.; Xiao, T., Functional differential equations with infinite delay in Banach space, Int. J. math. math. sci., 14, 3, 497-508, (1991) · Zbl 0743.34082
[6] Murakami, S., Some spectral properties of the solution operator for linear Volterra difference system, Proceedings of the third international conference on difference equations, 301-311, (1997), Taipei-China · Zbl 0938.39017
[7] Murakami, S., Representation of solutions of linear functional difference equations in phase space, Nonlinear anal. T.M.A., 30, 2, 1153-1164, (1997) · Zbl 0889.39012
[8] Elaydi, S.; Murakami, S.; Kamiyama, E., Asymptotic equivalence for difference equations with infinite delay, J. difference eq. and appl., 5, 1-23, (1999) · Zbl 0923.39004
[9] Cuevas, C.; Pinto, M., Asymptotic behavior in Volterra difference systems with unbounded delay, J. comp. and appl. math., 113, 217-225, (2000) · Zbl 0940.39005
[10] Poincare, H., Sur LES équations linéaires aux différentielles ordinaires et aux differénces finies, Amer. J. math., 7, 203-258, (1885) · JFM 17.0290.01
[11] Perron, O., Über einen statz des herr Poincaré, J. reine angew. math., 136, 17-37, (1909) · JFM 40.0385.01
[12] Perron, O., Über summengleichungen und poincarésche differenzengleichungen, Math. ann., 84, 1-15, (1921) · JFM 48.0479.01
[13] Benzaid, Z.; Lutz, D.A., Asymptotic representation of solutions of perturbed systems of linear difference equations, Studies in appl. math., 77, 195-221, (1987) · Zbl 0628.39002
[14] Coffman, C.V., Asymptotic behavior of solutions of ordinary difference equations, Trans. amer. math. soc., 110, 22-51, (1964) · Zbl 0122.09703
[15] Drozdowicz, A.; Popenda, J., Asymptotic behavior of the solutions of the second order difference equations, Proc. amer. math. soc., 99, 135-140, (1987) · Zbl 0612.39003
[16] Evgrafov, M.A., On the asymptotic behavior of difference equations, Dokl. acad. nauk. SSSR, 121, 26-29, (1958) · Zbl 0084.29401
[17] Pinto, M.; Pinto, M., Discrete dichotomies, Adv. in diff. eqs. I, Adv. in diff. eqs. I, 28, 259-270, (1994), Special Issue of Computers Math. Applic. · Zbl 0806.39004
[18] Pinto, M., Weighted convergent and bounded solutions of difference systems, Adv. in diff. eqs. II, 36, 10-12, 391-400, (1998), Special Issue of Computers Math. Applic. · Zbl 0933.39002
[19] Coppel, W.A., Dichotomies in stability theory, Lecture notes in mathematics, 629, (1978), Springer-Verlag · Zbl 0376.34001
[20] Henry, D., Geometric theory of semilinear parabolic equations, Lectures notes math., 840, (1981), Springer-Verlag · Zbl 0456.35001
[21] Naulin, R.; Pinto, M., Asymptotic solutions of nonlinear differential systems, Nonlinear analysis T.M.A., 23, 7, 871-882, (1994) · Zbl 0814.34030
[22] Naulin, R.; Pinto, M., Roughness of (h, k)-dichotomies, J. differential eqs., 118, 1, 20-35, (1995) · Zbl 0836.34047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.