×

The mean ergodic theorem for cosine operator functions with optimal and non-optimal rates. (English) Zbl 1002.47500


MSC:

47D09 Operator sine and cosine functions and higher-order Cauchy problems
47A35 Ergodic theory of linear operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] H. Berens,Interpolationsmethoden zur Behandlung von Approximationsprozessen auf Banachräumen, Lecture Notes in Mathematics 64, Springer-Verlag (Berlin-Heidelberg-New York, 1968).
[2] P. L. Butzer, The Banach-Steinhaus theorem with rates, and applications to various branches of analysis, in:General Inequalities 2 (Proc. Conf. Oberwolfach), ed. by E. F. Beckenbach, Birkhäuser (Basel, 1979), pp. 299–331.
[3] P. L. Butzer and H. Berens,Semi-Groups of Operators and Approximation, Springer-Verlag (Berlin-Heidelberg-New York, 1967). · Zbl 0164.43702
[4] P. L. Butzer and W. Dickmeis, Direct and inverse mean ergodic theorems with rates for semigroup operators, in:Approximation & Function-Spaces (Proc. Conf. Gdansk, August 27–31, 1979), ed. by Z. Ciesielski, North Holland (Amsterdam, 1981), pp. 191–196.
[5] P. L. Butzer and W. Dickmeis, On the sharpness of non-optimal approximation for semigroup operators,Manuscripta Math.,51 (1985), 243–251. · Zbl 0583.41020
[6] P. L. Butzer and R. J. Nessel,Fourier Analysis and Approximation, Vol. I, Birkhäuser (Basel, 1971) and Academic Press (New York, 1971). · Zbl 0217.42603
[7] P. L. Butzer and U. Westphal, Ein Operatorenkalkül für das approximationstheoretische Verhalten des Ergodensatzes im Mittel, in:Linear Operators and Approximation (Proc. Conf. Oberwolfach 1971), ed. by P. L. Butzer, J. P. Kahane and B. Sz.-Nagy, Birkhäuser, (Basel-Stuttgart, 1972), pp. 102–114. · Zbl 0252.47005
[8] P. L. Butzer and U. Westphal, The mean ergodic theorem and saturation,Indiana Univ. Math. J.,20 (1971), 1163–1174. · Zbl 0217.45202
[9] O. V. Davydov, On a problem of P. Butzer and W. Dickmeis,Dokl. Semin. Inst. Prikl. Mat.,5 (1990), 47–50 (in Russian).
[10] O. V. Davydov, Some condensation theorems for semigroup operators.Manuscripta Math.,79 (1993), 435–446. · Zbl 0798.47033
[11] W. Dickmeis, R. J. Nessel and E. van Wickeren, Quantitative extensions of the uniform boundedness principle,Jahresber. Deutsch. Math.-Verein.,89 (1987), 105–134. · Zbl 0634.41027
[12] N. Dunford, and J. T. Schwartz,Linear Operators, Vol. I: General Theory, Interscience (New York, 1958). · Zbl 0084.10402
[13] H. O. Fattorini, Ordinary differential equations in linear topological spaces I, II,J. Diff. Eq.,5 (1968), 72–105,6 (1969), 50–70. · Zbl 0175.15101
[14] H. O. Fattorini,The Cauchy Problem, Encyclopedia of Mathematics and Its Applications 18, Addison-Wesley (Reading, MA, 1983). · Zbl 0493.34005
[15] J. A. Goldstein, C. Radin and R. E. Showalter, Convergence rates of ergodic limits for semigroups and cosine functions,Semigroup Forum,16 (1978), 89–95. · Zbl 0393.47004
[16] E. Hille and R. S. Phillips,Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. Publ., Vol. 31 (Providence, R. I., 1957). · Zbl 0078.10004
[17] G. A. Hunt, Markoff processes and potentials II,Illinois J. Math.,1 (1957), 316–369. · Zbl 0100.13804
[18] U. Krengel,Ergodic Theorems, de Gruyter (Berlin-New York, 1985).
[19] M. Lin, On the uniform ergodic theorem,Proc. Amer. Math. Soc.,43 (1974), 337–340. · Zbl 0252.47004
[20] M. Lin, On the uniform ergodic theorem II,Proc. Amer. Math. Soc. 46 (1974), 217–225. · Zbl 0291.47006
[21] B. Nagy, On the generators of cosine operator functions,Publ. Math. Debrecen,21 (1974), 151–154. · Zbl 0314.47018
[22] B. Nagy, Approximation problems of cosine operator functions,Acta Math. Acad. Sci. Hungar.,29 (1977), 69–76. · Zbl 0346.47041
[23] D. Nasri-Roudsari, R. J. Nessel and R. Zeler, Resonance principles with applications to mean ergodic theorems and projection Operators,Acta Sci. Math. (Szeged). · Zbl 0826.47006
[24] G. da Prato and E. Giusti, Una charatterizziazione dei generatori di funzioni coseno astratte,Boll. Un. Math. Ital.,22 (1967), 357–368. · Zbl 0186.47702
[25] M. Riesz, L’intégrale de Riemann-Liouville et le problème de Cauchy,Acta Math.,81 (1949), 1–223. · Zbl 0033.27601
[26] S.-Y. Shaw, Mean ergodic theorems and linear functional equations,J. Funct. Anal.,87 (1989), 428–441. · Zbl 0704.47006
[27] S.-Y. Shaw, Uniform convergence of ergodic limits and approximate solutions,Proc. Amer. Math. Soc.,114 (1992) 405–411. · Zbl 0764.47006
[28] S.-Y. Shaw, Convergence rates of ergodic limits and approximate solutions,J. Approx. Theory,75 (1993), 157–166. · Zbl 0792.41024
[29] M. Sova, Cosine operator functions,Rozprawy Matemtyozne,49 (1966), 1–47. · Zbl 0156.15404
[30] C. C. Travis and G. F. Webb, Second order differential equations in Banach spaces, in:Nonlinear Equations in Abstract Spaces, ed. by V. Lakshimikantam Academic Press (New York, 1978), pp. 331–361. · Zbl 0455.34044
[31] K. Yosida, The pre-closedness of Hunt’s potential operator and its applications. in:Functional Analysis and Related Topics (Proc. Conf. Tokyo), April 1969, University of Tokyo Press (Tokyo 1970), pp. 324–331.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.