×

Concordance and mutation. (English) Zbl 1002.57007

In 1961, Fox has defined the knot concordance group \(\mathcal{C}\). The group \(\mathcal{C}\) is abelian and countable. By Levine’s work in 1969, there is an epimorphism \(\phi: \mathcal{C} \to G = {\mathbf Z}^{\infty} \oplus {\mathbf Z}_2^{\infty} \oplus {\mathbf Z}_4^{\infty}\), so that \(\mathcal{C} / \text{Ker}(\phi) \cong G\). In the article under review, the authors recall results about the group \(\mathcal{C}\) obtained by Fox, Milnor, Casson, Gordon, Jiang, Freedman, Donaldson, Witten, Cochran, Orr, Teichner, and Livingston. In particular, \(\text{Ker}(\phi)\) has a subgroup isomorphic to \({\mathbf Z}^{\infty}\) and a subgroup isomorphic to \({\mathbf Z}_2^{\infty}\). However, as the authors emphasize, the structure of the group \(\mathcal{C}\) remains a mystery. The authors consider a new group \(\mathcal{M}\), the Concordance Group of Mutants, defined as the quotient of \(\mathcal{C}\) obtained by using the equivalence relation generated by positive mutation. The authors show that positive mutation preserves the \(S\)-equivalence class of a knot, and using this fact, they show that Levine’s epimorphism \(\phi: \mathcal{C} \to G\) factors as \(\phi_2 \circ \phi_1\), where \(\phi_1: \mathcal{C} \to \mathcal{M}\) and \(\phi_2: \mathcal{M} \to G\). The main result of the article asserts that the kernels of \(\phi_1\) and \(\phi_2\) are infinitely generated, containing subgroups isomorphic to \({\mathbf Z}^{\infty}\), and the kernel of \(\phi_2\) contains a subgroup isomorphic to \({\mathbf Z}_2^{\infty}\). In order to obtain the result, the authors construct families of knots which generate appropriate subgroups of \(\text{Ker}(\phi_1)\) and \(\text{Ker}(\phi_2)\). The main applied technique in proving the result is the use of Casson–Gordon invariants. Before the article under review was published, only one example of distinct (up to concordance) positive mutants has been known. Among other constructions, the authors of the article present for the first time infinite families of knots that are distinct (up to concordance) from their positive mutants.

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv EuDML EMIS

References:

[1] S Akbulut, R Kirby, Branched covers of surfaces in 4-manifolds, Math. Ann. 252 (1979/80) 111 · Zbl 0421.57002
[2] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405 · Zbl 0314.58016
[3] G E Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics 46, Academic Press (1972) · Zbl 0246.57017
[4] G Burde, H Zieschang, Knots, de Gruyter Studies in Mathematics 5, Walter de Gruyter & Co. (1985) · Zbl 0568.57001
[5] A J Casson, C M Gordon, Cobordism of classical knots, Progr. Math. 62, Birkhäuser (1986) 181
[6] A J Casson, C M Gordon, On slice knots in dimension three, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 39 · Zbl 0394.57008
[7] J C Cha, K H Ko, On equivariant slice knots, Proc. Amer. Math. Soc. 127 (1999) 2175 · Zbl 0959.57003
[8] T D Cochran, R E Gompf, Applications of Donaldson’s theorems to classical knot concordance, homology 3-spheres and property \(P\), Topology 27 (1988) 495 · Zbl 0669.57003
[9] T D Cochran, K E Orr, P Teichner, Knot concordance, Whitney towers and \(L^2\)-signatures, Ann. of Math. \((2)\) 157 (2003) 433 · Zbl 1044.57001
[10] P E Conner, E E Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete 33, Academic Press (1964) · Zbl 0125.40103
[11] D Coray, F Michel, Knot cobordism and amphicheirality, Comment. Math. Helv. 58 (1983) 601 · Zbl 0529.57010
[12] S K Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279 · Zbl 0507.57010
[13] R H Fox, A quick trip through knot theory, Prentice-Hall (1962) 120 · Zbl 1246.57002
[14] R H Fox, J W Milnor, Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J. Math. 3 (1966) 257 · Zbl 0146.45501
[15] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357 · Zbl 0528.57011
[16] M H Freedman, F Quinn, Topology of 4-manifolds, Princeton Mathematical Series 39, Princeton University Press (1990) · Zbl 0705.57001
[17] P M Gilmer, Slice knots in \(S^3\), Quart. J. Math. Oxford Ser. \((2)\) 34 (1983) 305 · Zbl 0542.57007
[18] P Gilmer, C Livingston, The Casson-Gordon invariant and link concordance, Topology 31 (1992) 475 · Zbl 0797.57001
[19] P Gilmer, C Livingston, Discriminants of Casson-Gordon invariants, Math. Proc. Cambridge Philos. Soc. 112 (1992) 127 · Zbl 0791.57015
[20] , Knot theory, Lecture Notes in Mathematics 685, Springer (1978) · Zbl 0378.00013
[21] C M Herald, Flat connections, the Alexander invariant, and Casson’s invariant, Comm. Anal. Geom. 5 (1997) 93 · Zbl 0893.57003
[22] C M Herald, Existence of irreducible representations for knot complements with nonconstant equivariant signature, Math. Ann. 309 (1997) 21 · Zbl 0887.57013
[23] M Heusener, J Kroll, Deforming abelian \(\mathrm{SU}(2)\)-representations of knot groups, Comment. Math. Helv. 73 (1998) 480 · Zbl 0910.57004
[24] B J Jiang, A simple proof that the concordance group of algebraically slice knots is infinitely generated, Proc. Amer. Math. Soc. 83 (1981) 189 · Zbl 0474.57004
[25] A Kawauchi, Topological imitation, mutation and the quantum \(\mathrm{SU}(2)\) invariants, J. Knot Theory Ramifications 3 (1994) 25 · Zbl 0823.57012
[26] C Kearton, Mutation of knots, Proc. Amer. Math. Soc. 105 (1989) 206 · Zbl 0675.57005
[27] M A Kervaire, Knot cobordism in codimension two, Lecture Notes in Mathematics 197, Springer (1971) 83 · Zbl 0225.57006
[28] R Kirby, Problems in low dimensional manifold theory, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 273 · Zbl 0394.57002
[29] R Kirby, Problems in low-dimensional topology, AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35
[30] R C Kirby, W B R Lickorish, Prime knots and concordance, Math. Proc. Cambridge Philos. Soc. 86 (1979) 437 · Zbl 0426.57001
[31] P Kirk, C Livingston, Twisted knot polynomials: inversion, mutation and concordance, Topology 38 (1999) 663 · Zbl 0928.57006
[32] P Kirk, C Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999) 635 · Zbl 0928.57005
[33] J Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969) 229 · Zbl 0176.22101
[34] J Levine, Invariants of knot cobordism, Invent. Math. 8 (1969) 98 · Zbl 0179.52401
[35] W B R Lickorish, Distinct 3-manifolds with all \(\mathrm{SU}(2)_q\) invariants the same, Proc. Amer. Math. Soc. 117 (1993) 285 · Zbl 0770.57003
[36] R Litherland, A formula for the Casson-Gordon invariant of a knot, preprint (1980)
[37] R A Litherland, Cobordism of satellite knots, Contemp. Math. 35, Amer. Math. Soc. (1984) 327 · Zbl 0563.57001
[38] C Livingston, Homology cobordisms of 3-manifolds, knot concordances, and prime knots, Pacific J. Math. 94 (1981) 193 · Zbl 0472.57003
[39] C Livingston, Knots which are not concordant to their reverses, Quart. J. Math. Oxford Ser. \((2)\) 34 (1983) 323 · Zbl 0537.57003
[40] C Livingston, Order 2 algebraically slice knots, Geom. Topol. Monogr. 2, Geom. Topol. Publ., Coventry (1999) 335 · Zbl 0968.57006
[41] C Livingston, S Naik, Obstructing four-torsion in the classical knot concordance group, J. Differential Geom. 51 (1999) 1 · Zbl 1025.57013
[42] R Meyerhoff, D Ruberman, Mutation and the \(\eta\)-invariant, J. Differential Geom. 31 (1990) 101 · Zbl 0689.57012
[43] R Myers, Homology cobordisms, link concordances, and hyperbolic 3-manifolds, Trans. Amer. Math. Soc. 278 (1983) 271 · Zbl 0532.57006
[44] H R Morton, P Traczyk, The Jones polynomial of satellite links around mutants, Contemp. Math. 78, Amer. Math. Soc. (1988) 587 · Zbl 0666.57010
[45] D Mullins, The generalized Casson invariant for 2-fold branched covers of \(S^3\) and the Jones polynomial, Topology 32 (1993) 419 · Zbl 0784.57003
[46] K Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965) 387 · Zbl 0137.17903
[47] K Murasugi, Knot theory and its applications, Birkhäuser (1996) · Zbl 0864.57001
[48] S Naik, Casson-Gordon invariants of genus one knots and concordance to reverses, J. Knot Theory Ramifications 5 (1996) 661 · Zbl 0890.57014
[49] S Naik, Equivariant concordance of knots in \(S^3\), World Sci. Publ., River Edge, NJ (1997) 81 · Zbl 0968.57005
[50] J Porti, Torsion de Reidemeister pour les variétés hyperboliques, Mem. Amer. Math. Soc. 128 (1997) · Zbl 0881.57020
[51] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish (1976) · Zbl 0339.55004
[52] Y W Rong, Mutation and Witten invariants, Topology 33 (1994) 499 · Zbl 0823.57011
[53] D Ruberman, Mutation and volumes of knots in \(S^3\), Invent. Math. 90 (1987) 189 · Zbl 0634.57005
[54] L Rudolph, An obstruction to sliceness via contact geometry and “classical” gauge theory, Invent. Math. 119 (1995) 155 · Zbl 0843.57011
[55] J P Serre, Linear representations of finite groups, Graduate Texts in Mathematics 42, Springer (1977) · Zbl 0355.20006
[56] A G Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969) 251 · Zbl 0191.54703
[57] H F Trotter, On \(S\)-equivalence of Seifert matrices, Invent. Math. 20 (1973) 173 · Zbl 0269.15009
[58] H F Trotter, Non-invertible knots exist, Topology 2 (1963) 275 · Zbl 0136.21203
[59] K Walker, An extension of Casson’s invariant, Annals of Mathematics Studies 126, Princeton University Press (1992) · Zbl 0752.57011
[60] C T C Wall, Non-additivity of the signature, Invent. Math. 7 (1969) 269 · Zbl 0176.21501
[61] E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769 · Zbl 0867.57029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.