Stolz, Günter Strategies in localization proofs for one-dimensional random Schrödinger operators. (English) Zbl 1002.60062 Proc. Indian Acad. Sci., Math. Sci. 112, No. 1, 229-243 (2002). Author’s abstract: Recent results on localization, both exponential and dynamical, for various models of one-dimensional, continuum, random Schrödinger operators are reviewed. This includes Anderson models with indefinite single site potentials, the Bernoulli-Anderson model, the Poisson model, and the random displacement model. Among the tools which are used to analyse these models are generalized spectral averaging techniques and results from inverse spectral and scattering theory. A discussion of open problems is included. Reviewer: Andrzej Nowak (Katowice) Cited in 7 Documents MSC: 60H25 Random operators and equations (aspects of stochastic analysis) 47B80 Random linear operators 82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics Keywords:localization; Schrödinger operator; random potential PDF BibTeX XML Cite \textit{G. Stolz}, Proc. Indian Acad. Sci., Math. Sci. 112, No. 1, 229--243 (2002; Zbl 1002.60062) Full Text: DOI References: [1] Bennewitz, C., Spectral asymptotics for Sturm-Liouville equations, Proc. London Math. Soc., 59, 294-338 (1989) · Zbl 0681.34023 [2] De Bièvre, S.; Germinet, F., Dynamical localization for the random dimer Schrödinger operator, J. Stat. Phys., 98, 1135-1148 (2000) · Zbl 1005.82028 [3] Borg, G., Uniqueness theorems in the spectral theory of y+ (λ -q(x))y = 0, Proc. 11th Scandinavian Congress of Mathematicians, 276-287 (1952), Oslo: Johan Grundt Tanums Forlag, Oslo [4] Bougerai, P.; Lacroix, J., Products of random matrices with applications to Schrödinger operators (1985), Boston—Stuttgart: Birkhäuser, Boston—Stuttgart [5] Buschmann, D.; Stolz, G., Two-parameter spectral averaging and localization for nonmonotonic random Schrödinger operators, Trans. Am. Math. Soc., 353, 635-653 (2000) · Zbl 0978.81021 [6] Carmona, R.; Klein, A.; Martinelli, F., Anderson localization for Bernoulli and other singular potentials, Commun. Math. Phys., 108, 41-66 (1987) · Zbl 0615.60098 [7] Carmona, R.; Lacroix, J., Spectral theory of random Schrödinger operators (1990), Basel-Berlin: Birkhäuser, Basel-Berlin · Zbl 0717.60074 [8] Coddington, E. A.; Levinson, N., Theory of ordinary differential equations (1955), New Delhi: McGraw-Hill, New Delhi · Zbl 0064.33002 [9] Damanik D, Sims R and Stolz G, Localization for one-dimensional, continuum, Bernoulli —Anderson models, preprint 2000, available at mp-arc 00-404 · Zbl 1107.82025 [10] Damanik D, Sims R and Stolz G, Lyapunov exponents in continuum Bernoulli-Anderson models, to appear in Proceedings of the Kovalevski-Symposium, Operator Theory: Advances and Application (Birkhäuser) · Zbl 1038.34049 [11] Damanik D, Sims R and Stolz G, in preparation [12] Deift, P.; Trubowitz, E., Inverse scattering on the line, Commun. Pure Appl. Math., 32, 121-251 (1979) · Zbl 0388.34005 [13] Dunlap, D. H.; Wu, H-L; Phillips, P. W., Absence of localization in the random-dimer model, Phys. Rev. Lett., 65, 88-91 (1990) [14] Herbst, I.; Howland, J., The Stark ladder and other one-dimensional external field problems, Commun. Math. Phys., 80, 23-42 (1981) · Zbl 0473.47037 [15] Hislop P D and Klopp F, The integrated density of states for some random operators with nonsign definite potentials, preprint 2001, available at mp-arc 01-139 · Zbl 1013.60046 [16] Jitomirskaya S, Schulz-Baldes H and Stolz G, in preparation [17] Kirsch, W., On a class of random Schrödinger operators, Adv. Appl. Math., 6, 177-187 (1985) · Zbl 0578.60059 [18] Kirsch, W.; Stollmann, P.; Stolz, G., Anderson Localization for Random Schrödinger Operators with Long Range Interactions, Commun. Math. Phys., 195, 495-507 (1998) · Zbl 0928.47049 [19] Klopp, F., Localization for semiclassical continuous random Schrödinger operators II: The random displacement model, Helv. Phys. Acta, 66, 810-841 (1993) · Zbl 0820.60043 [20] Klopp, F., Localization for some continuous random Schrödinger operators, Commun. Math. Phys., 167, 553-569 (1995) · Zbl 0820.60044 [21] Kotani, S.; Analysis, Stochastic, Lyapunov indices determine absolutely continuous spectra of stationary one dimensional Schrödinger operators, 225-247 (1984), Amsterdam: North Holland, Amsterdam [22] Kotani S, Lyapunov exponents and spectra for one-dimensional random Schrödinger operators, in: Random Matrices and their Applications (eds) J E Cohen, H Kesten and C M Newman American Mathematical Society,Contemp. Math.50 (1986) 277-286, Providence [23] Kotani, S.; Simon, B., Localization in general one-dimensional random systems, Commun. Math. Phys., 112, 103-119 (1987) · Zbl 0637.60080 [24] Minami, N., An extension of Kotani’s theorem to random generalized Sturm-Liouville operators, Commun. Math. Phys., 103, 387-402 (1986) · Zbl 0611.60056 [25] Minami, N., An extension of Kotani’s theorem to random generalized Sturm-Liouville operators II, in: Stochastic processes in classical and quantum systems, Lecture Notes Phys., 411-419 (1986), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York [26] Pastur, L.; Figotin, A., Spectra of Random and Almost-Periodic Operators (1992), Berlin-Heidelberg-New York: Springer Verlag, Berlin-Heidelberg-New York · Zbl 0752.47002 [27] Shubin, C.; Vakilian, R.; Wolff, T., Some harmonic analysis questions suggested by Anderson-Bernoulli models, Geom. Funct. Anal., 8, 932-964 (1998) · Zbl 0920.42005 [28] Sims R, Ph.D. Thesis (Univ. of Alabama at Birmingham), in preparation [29] Sims, R.; Stolz, G., Localization in one dimensional random media: a scattering theoretic approach, Commun. Math. Phys., 213, 575-597 (2000) · Zbl 1017.82024 [30] Stolz, G., Spectral theory of Schrödinger operators with potentials of infinite barriers type (1994), Frankfurt University: Habilitationsschrift, Frankfurt University [31] Stolz, G., Localization for random Schrödinger operators with Poisson potential, Ann. Inst. Henri Poincaré, 63, 297-314 (1995) · Zbl 0843.60058 [32] Stolz, G., Non-monotonic random schrödinger operators: The Anderson model, J. Math. Anal. Appl., 248, 173-183 (2000) · Zbl 0974.47034 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.