Bettner, Stefan; Schertz, Reinhard Lower powers of elliptic units. (English) Zbl 1003.11026 J. Théor. Nombres Bordx. 13, No. 2, 339-351 (2001). The authors construct products of singular values of the Klein form and prove that these values are contained in ray class fields over imaginary quadratic fields. From the calculated examples one sees that in these cases the singular values generate the corresponding ray class field. The authors conjecture that this is always the case. Reviewer: Jannis A.Antoniadis (Iraklion) Cited in 1 ReviewCited in 5 Documents MSC: 11G16 Elliptic and modular units 11R27 Units and factorization 11Y40 Algebraic number theory computations 11R37 Class field theory Keywords:products of singular values; Klein form; ray class fields PDF BibTeX XML Cite \textit{S. Bettner} and \textit{R. Schertz}, J. Théor. Nombres Bordx. 13, No. 2, 339--351 (2001; Zbl 1003.11026) Full Text: DOI EMIS Numdam EuDML References: [1] Deuring, M., Die Klassenkörper der komplexen Multiplikation. Enzykl. d. math. Wiss.1/2, 2. Aufl., Heft 10, Stuttgart, 1958. · Zbl 0123.04001 [2] Lang, S., Elliptic functions. Addison Wesley, 1973. · Zbl 0316.14001 [3] Meyer, C., Über einige Anwendungen Dedekindscher Summen. Journal Reine Angew. Math.198 (1957), 143-203. · Zbl 0079.10303 [4] Robert, G., La racine 12-ième canonique de Δ(L)[L:L]/Δ(L)Sém. de th. des nombresParis, 1989-90. [5] Schertz, R., Niedere Potenzen elliptischer Einheiten. Proc. of the International Conference on Class Numbers and Fundamental Units of Algebraic Number Fields, Katata, Japan (1986), 67-87. · Zbl 0615.12013 [6] Schertz, R., Construction of Ray Class Fields by Elliptic Units. J. Théor. Nombres Bordeaux9 (1997), 383-394. · Zbl 0902.11047 [7] Stark, H., L-functions at s = 1, IV. Adv. Math.35 (1980), 197-235. · Zbl 0475.12018 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.