zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Modular automorphisms preserving idempotence and Jordan isomorphisms of triangular matrices over commutative rings. (English) Zbl 1003.15001
Authors’ abstract: Let ${\cal R}$ be a commutative ring with 1 and 2 being the units of ${\cal R}$, let $T_n({\cal R})$ be the $n\times n$ upper triangular matrix module over ${\cal R}$, and let ${\cal L}({\cal R})$ be the set of all ${\cal R}$-module automorphisms on $T_n({\cal R})$, which preserve idempotence. The main result of this paper is: if $f$ is an ${\cal R}$-module automorphism on $T_n({\cal R})$, then $f\in{\cal L}({\cal R})$ if and only if there exist an invertible matrix $U\in T_n({\cal R})$ and an idempotent element $e\in{\cal R}$ such that $f(X)= U(eX+(1-e) X^\delta)U^{-1}$ for any $X= (x_{ij}) \in T_n({\cal R})$, where $X^\delta= (x_{n+1-j,n+1-i})$. As applications, we determine all Jordan isomorphisms of $T_n({\cal R})$ over ${\cal R}$.

MSC:
15A04Linear transformations, semilinear transformations (linear algebra)
16S50Endomorphism rings: matrix rings
15B33Matrices over special rings (quaternions, finite fields, etc.)
16W20Automorphisms and endomorphisms of associative rings
WorldCat.org
Full Text: DOI
References:
[1] Beasley, L. B.; Pullman, N. J.: Linear operators preserving idempotent matrices over fields. Linear algebra appl. 146, 7-20 (1991) · Zbl 0718.15004
[2] Cao, C. G.: Linear maps preserving idempotence on matrix modules over local rings. J. heilongjiang univ. Natur. sci. 1, 1-3 (1989) · Zbl 1105.16303
[3] Molnar, L.; Semrl, P.: Some linear preserver on upper matrices. Linear multilinear algebra 45, 198-206 (1998)
[4] Cao, C. G.; Zhang, X.: Additive operators preserving idempotent matrices over fields and applications. Linear algebra appl. 248, 327-338 (1996) · Zbl 0861.15017
[5] Chooi, W. L.; Lim, M. H.: Linear preservers on triangular matrices. Linear algebra appl. 269, 241-255 (1998) · Zbl 0886.15004
[6] John, R.; Silvestor: Introduction to algebraic K-theory. (1981)
[7] Jondrup, S.: Automorphisms and derivations of upper triangular matrix rings. Linear algebra appl. 221, 205-218 (1995) · Zbl 0826.16034
[8] Li, C. K.; Tsing, N. K.: Linear preserver problems: A brief introduction and some special techniques. Linear algebra appl. 162--164, 217-235 (1992) · Zbl 0762.15016
[9] Liu, S. W.: Linear maps preserving idempotence on matrix modules over principal ideal domains. Linear algebra appl. 258, 219-231 (1997) · Zbl 0877.16014
[10] Beidar, K. L.: M. bresar, M.A. Chebotar, Jordan isomorphisms of triangular matrix algebras over a connected commutative ring. Linear algebra appl. 312, 197-201 (2000) · Zbl 0962.15007