zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Effect of dependence on statistics for determination of change. (English) Zbl 1003.62537
Summary: Quite a number of test statistics and estimators for detection of a change in the mean of a series of independent observations were proposed and studied. The purpose of this paper is to examine the behaviour of these statistics if the observations are dependent, particularly, if they form a linear process.

62M10Time series, auto-correlation, regression, etc. (statistics)
Full Text: DOI
[1] Antoch, J.; Hušková, M.: Change-point problem. Computational aspects of model choice, 11-38 (1992)
[2] Antoch, J.; Hušková, M.: Procedures for detection of multiple changes in series of independent observations. Proc. 5th Prague symp. On asymptotic statistics, 123-236 (1994)
[3] Antoch, J.; Hušková, M.; Veraverbeke, N.: Change-point problem and bootstrap. J. nonparametric statist. 5, 123-144 (1995) · Zbl 0857.62029
[4] Bagshaw, M.; Johnson, R. A.: The effect of serial correlation on the performance of CUSUM tests II. Technometrics 17, 73-80 (1975)
[5] Bai, J.: On the partial sums of residuals in autoregressive and moving average models. J. time ser. Anal. 14, 247-260 (1993) · Zbl 0768.62073
[6] Bai, J.: Least squares estimation of a shift in linear processes. J. time ser. Anal. 15, 453-472 (1994) · Zbl 0808.62079
[7] Brockwell, P. J.; Davis, R. A.: Time series: theory and methods. (1991) · Zbl 0709.62080
[8] Brodsky, B. S.; Darkhovsky, B. E.: Nonparametric methods in change-point problems. (1993) · Zbl 1274.62512
[9] Chow, Y. S.; Teicher, H.: Probability theory. (1988)
[10] Csörgo?, M.; Csörgo?, S.; Horváth, L.; Mason, D. M.: Weighted empirical and quantile processes. Ann. probab. 14, 31-85 (1986) · Zbl 0589.60029
[11] Csörgo?, M.; Horváth, L.: Nonparametric methods for the change point problem. Handbook of statistics 7, 403-425 (1988)
[12] Csörgo?, M.; Horváth, L.; Shao, Q. -M.: Convergence of integrals of uniform empirical and quantile processes. Stochastic process. Appl. 46, 283-294 (1993) · Zbl 0784.60038
[13] Deheuvels, P.; Revész, P.: Weak laws for increments of Wiener processes, Brownian bridges, empirical processes and partial sums of i.i.d. R.v.’s. Mathematical statistics and probability theory (1987) · Zbl 0629.60089
[14] Horváth, L.: Change in autoregressive processes. Stochastic process. Appl. 44, 221-242 (1993) · Zbl 0769.62067
[15] Horváth, L. and P. Kokozska, The effect of long-range dependence on change-point estimators (submitted).
[16] Horváth, L. and Qi-Man Shao, Darling Erdo?s type theorems for sums of Gaussian variables with long range memory (submitted).
[17] Hušková, M.: Miscellaneous procedures connected with the change point problem. Proc. COMPSTAT’94, 443-457 (1994)
[18] Jandhyala, V. K.; Macneill, I. B.: Residual partial sum limit process for regression models with applications to detecting parameter changes at unknown times. Stochastic process. Appl. 33, 309-323 (1989) · Zbl 0679.62056
[19] Jandhyala, V. K.; Macneill, I. B.: Tests for parameter changes at unknown times in linear regression models. Stochastic process. Appl. 27, 291-316 (1991) · Zbl 0736.62059
[20] Johnson, R. A.; Bashaw, M.: The effect of serial correlation on the performance of CUSUM tests. Technometrics 16, 103-112 (1974) · Zbl 0277.62069
[21] Kulperger, R. J.: On the residuals of autoregressive processes and polynomial regression. Stochastic process. Appl. 21, 107-118 (1985) · Zbl 0584.62144
[22] Nagaraj, N. K.; Reddy, C. S.: Asymptotic null distributions of tests for change in level in correlated data. Sankhya ser. A 55, 37-48 (1993) · Zbl 0791.62022
[23] Parzen, E.: On consistent estimates of the spectrum of a stationary time series. Ann. math. Statist. 28, 329-348 (1957) · Zbl 0081.14102
[24] Parzen, E.: On asymptotically efficient consistent estimates of the spectral density function of a stationary time series. J. roy. Statist. soc. Ser. B 20, 303-322 (1958) · Zbl 0091.15102
[25] Picard, D.: Testing and estimating change-points in time series. Adv. is appl. Probab. 17, 841-867 (1985) · Zbl 0585.62151
[26] Priestley, M. B.: Spectral analysis and time series. 1 (1981) · Zbl 0537.62075
[27] Szyszkowicz, B.: Weighted asymptotic for partial sum processes in D[0,1]. C. R. Math. rep. Acad. sci Canada 13, 211-216 (1992) · Zbl 0747.60035
[28] Tang, S. M.; Neill, I. B. Mac: The effect of serial correlation on tests for parameter change at unknown time. Ann. statist. 21, 552-575 (1993) · Zbl 0771.62072