zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponentially-fitted Runge-Kutta-Nyström method for the numerical solution of initial-value problems with oscillating solutions. (English) Zbl 1003.65081
The author constructs effectively a new three stage Runge-Kutta-Nyström methods of order four for $${d^2u\over dt^2}= f(t, u(x))$$ provided that the solutions are periodic or oscillating. Stability is analyzed and numerical experiments are carried out.

65L06Multistep, Runge-Kutta, and extrapolation methods
65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
65L20Stability and convergence of numerical methods for ODE
65L70Error bounds (numerical methods for ODE)
34C10Qualitative theory of oscillations of ODE: zeros, disconjugacy and comparison theory
34C25Periodic solutions of ODE
Full Text: DOI
[1] Dormand, J. R.; El-Mikkawy, M. E. A.; Prince, P. J.: Families of Runge-Kutta-Nyström formulae. IMA J. Numer. anal. 7, 235-250 (1987) · Zbl 0624.65059
[2] Hairer, E.; Norsett, S. P.; Wanner, G.: Second edition solving ordinary differential equations. I nonstiff problems. Solving ordinary differential equations. I nonstiff problems 8 (1993) · Zbl 0789.65048
[3] Avdelas, G.; Simos, T. E.: Embedded methods for the numerical solution of the Schrödinger equation. Computers math. Applic. 31, No. 2, 85-102 (1996) · Zbl 0853.65079
[4] Simos, T. E.; Williams, P. S.: On finite difference methods for the solution of the Schrödinger equation. Computers & chemistry 23, 513-554 (1999) · Zbl 0940.65082
[5] Lamkin, M. F.: Application of exponential-based methods for problems in CFD. Ph.d. thesis (1986)
[6] Pratt, D. T.: Exponential-fitted methods for integrating stiff systems of odes: application to homogeneous gas-phase chemical kinetics. JANAFF propulsion meeting, new Orléans, LA (1984)
[7] Lamkin, M. F.; Pratt, D. T.: Improvements in accuracy of approximate solutions of stiff systems of odes by use of exponential interpolants. Proc. simulation conf., San Diego, CA, 17-18 (1985)
[8] Neta, B.: Special methods for problems whose oscillatory solution is damped. Appl. math. Comput. 31, 161-169 (1989) · Zbl 0671.65049
[9] Sommeijer, B. P.; Van Der Houwen, P. J.; Neta, B.: Symmetric linear multistep methods for second-order differential equations with periodic solutions. Centrum voor wiskunde en informatica report NM-R8501 (1985) · Zbl 0596.65046
[10] Sommeijer, B. P.; Van Der Houwen, P. J.; Neta, B.: Symmetric linear multistep methods for second-order differential equations with periodic solutions. Appl. numer. Math. 2, 69-77 (1986) · Zbl 0596.65046
[11] Lyche, T.: Chebyshevian multistep methods for ordinary differential equations. Numer. math. 19, 65-75 (1972) · Zbl 0221.65123
[12] Stiefel, E.; Bettis, D. G.: Stabilization of cowell’s method. Numer. math. 13, 154-175 (1969) · Zbl 0219.65062