Borja, Ronaldo I. A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation. (English) Zbl 1003.74074 Comput. Methods Appl. Mech. Eng. 190, No. 11-12, 1529-1549 (2000). Summary: This paper presents a finite element model for strain localization analysis of elastoplastic solids subjected to discontinuous displacement fields based on standard Galerkin approximation. Strain enhancements via jumps in the displacement field are captured and condensed on the material level, leading to a formulation that does not require static condensation to be performed on the element level. The mathematical formulation revolves around the dual response of a macroscopic point cut by a shear band, which requires the satisfaction of the yield condition on the band as the same stress point unloads elastically just outside the band. Precise conditions for the appearance of slip lines, including their initiation and evolution, are outlined for a rate-independent strain-softening Drucker-Prager model, and explicit analytical expressions are used to describe the orientation of the slip line in a plane strain setting. At post-localization the stress-point integration algorithm along the band is exact and amenable to consistent linearization. Numerical examples involving simple shearing of elastoplastic solids with deviatoric plastic flow, as well as plane strain compression of dilatant cohesive/frictional materials, are presented to demonstrate absolute objectivity with respect to mesh refinement and insensitivity to mesh alignment of finite element solutions. Cited in 1 ReviewCited in 47 Documents MSC: 74S05 Finite element methods applied to problems in solid mechanics 74R20 Anelastic fracture and damage Keywords:frictional materials; finite element model; strain localization; elastoplastic solids; discontinuous displacement; Galerkin approximation; shear band; yield condition; rate-independent strain-softening Drucker-Prager model; slip line; stress-point integration algorithm; deviatoric plastic flow × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Lambe, T. W.; Whitman, R. V., Soil Mechanics (1969), Wiley: Wiley New York [2] M.J. Hvorslev, Physical components of the shear strength of saturated clays, Research Conference on Shear Strength of Cohesive Soils, ASCE, June 1960, pp. 169-273; M.J. Hvorslev, Physical components of the shear strength of saturated clays, Research Conference on Shear Strength of Cohesive Soils, ASCE, June 1960, pp. 169-273 [3] K.H. Roscoe, The influence of strains in soil mechanics, 10th Rankine Lecture, Géotechnique 20 (2) (1970) 129-170; K.H. Roscoe, The influence of strains in soil mechanics, 10th Rankine Lecture, Géotechnique 20 (2) (1970) 129-170 [4] G. Scarpelli, D.M. Woods, Experimental observations of shear band patterns in direct shear tests, in: Proceedings IUTAM Conference on Deformation and Failure of Granular Materials, Delft, Balkema Publ., Rotterdam, 1982, pp. 473-484; G. Scarpelli, D.M. Woods, Experimental observations of shear band patterns in direct shear tests, in: Proceedings IUTAM Conference on Deformation and Failure of Granular Materials, Delft, Balkema Publ., Rotterdam, 1982, pp. 473-484 [5] W. Johnson, Henri Tresca as the originator of adiabatic heat lines, Int. J. Mech. Sci. (1987) 301-310; W. Johnson, Henri Tresca as the originator of adiabatic heat lines, Int. J. Mech. Sci. (1987) 301-310 [6] Hill, R. J.; Hutchinson, J. W., Bifurcation phenomena in the plane tension test, J. Mech. Phys. Solids, 23, 239-264 (1975) · Zbl 0331.73048 [7] Rudnicki, J. W.; Rice, J. R., Conditions for the localization of deformation in pressure sensitive dilatant materials, J. Mech. Phys. Solids, 23, 371-394 (1975) [8] J.R. Rice, The localization of plastic deformation, in: W.T. Koiter (Ed.), Theoretical and Applied Mechanics, North Holland, Amsterdam, 1976, pp. 207-220; J.R. Rice, The localization of plastic deformation, in: W.T. Koiter (Ed.), Theoretical and Applied Mechanics, North Holland, Amsterdam, 1976, pp. 207-220 · Zbl 0368.73036 [9] Simo, J. C.; Oliver, J.; Armero, F., An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids, Comput. Mech., 12, 277-296 (1993) · Zbl 0783.73024 [10] Triantafyllidis, N.; Aifantis, E. C., A gradient approach to localization of deformation, I: Hyperelastic materials, J. Elasticity, 16, 225-237 (1986) · Zbl 0594.73044 [11] de Borst, R.; Sluys, L. J., Localisation in a Cosserat continuum under static and dynamic loading conditions, Comput. Methods Appl. Mech. Engrg., 90, 805-827 (1991) [12] Bazant, Z. P.; Belytschko, M.; Chang, T. P., Continuum theory for strain-softening, J. Engrg. Mech., ASCE, 110, 1666-1691 (1984) [13] Coleman, B. D.; Hodgon, M. L., On shear bands in ductile materials, Arch. Rat. Mech. Anal., 90, 219-247 (1985) · Zbl 0625.73041 [14] Loret, B.; Prevost, J. H., Dynamic strain localization in elasto-(visco-)plastic solids, Part 1. General formulation and one-dimensional examples, Comput. Methods Appl. Mech. Engrg., 83, 247-273 (1990) · Zbl 0717.73030 [15] Prevost, J. H.; Loret, B., Dynamic strain localization in elasto-(visco-)plastic solids, Part 2. Plane strain examples, Comput. Methods Appl. Mech. Engrg., 83, 275-294 (1990) · Zbl 0717.73031 [16] R.I. Borja, R.A. Regueiro, Strain localization in frictional materials exhibiting displacement jumps, Comput. Methods Appl. Mech. Engrg., in press; R.I. Borja, R.A. Regueiro, Strain localization in frictional materials exhibiting displacement jumps, Comput. Methods Appl. Mech. Engrg., in press · Zbl 0997.74009 [17] C.A. Coulomb, Essai sur une application des règles de Maximus et Minimis à quelques Problèmes de Statique, relatifs à l’Architecture, Mémoires de Mathématique et de Physique, Présentés a l’Académie Royale des Sciences, par divers Savans, et lûs dans ses Assemblées, Paris 7 (1776) 343-382; C.A. Coulomb, Essai sur une application des règles de Maximus et Minimis à quelques Problèmes de Statique, relatifs à l’Architecture, Mémoires de Mathématique et de Physique, Présentés a l’Académie Royale des Sciences, par divers Savans, et lûs dans ses Assemblées, Paris 7 (1776) 343-382 [18] W.J.M. Rankine, On the stability of loose earth, Philos. Trans. Roy. Soc. London 147 (1) (1857) 9-27; W.J.M. Rankine, On the stability of loose earth, Philos. Trans. Roy. Soc. London 147 (1) (1857) 9-27 [19] Terzaghi, K., Theoretical Soil Mechanics (1943), Wiley: Wiley New York [20] Meyerhof, G. G., The ultimate bearing capacity of foundations, Géotechnique, 2, 301-332 (1951) [21] Bishop, A. W., The use of the slip circle in the stability analysis of earth slopes, Géotechnique, 5, 7-17 (1955) [22] N. Janbu, L. Bjerrum, B. Kjaernsli, Veiledning ved losing av fundamenteringsoppgaver, Norwegian Geotechnical Institute Publisher, Oslo, 16, 1956; N. Janbu, L. Bjerrum, B. Kjaernsli, Veiledning ved losing av fundamenteringsoppgaver, Norwegian Geotechnical Institute Publisher, Oslo, 16, 1956 [23] J.C. Simo, J. Oliver, A new approach to the analysis and simulation of strain softening in solids, in: Z.P. Bazant, Z. Bittnar, M. Jirásek, J. Mazars (Eds.), Fracture and Damage in Quasibrittle Structures, E&FN Spon, vol. 2-6 Boundary Row, London 1994, pp. 25-39; J.C. Simo, J. Oliver, A new approach to the analysis and simulation of strain softening in solids, in: Z.P. Bazant, Z. Bittnar, M. Jirásek, J. Mazars (Eds.), Fracture and Damage in Quasibrittle Structures, E&FN Spon, vol. 2-6 Boundary Row, London 1994, pp. 25-39 [24] F. Armero, K. Garikipati, Recent advances in the analysis and numerical simulation of strain localization in inelastic solids, in: D.R.J. Owen, E. Oñate, E. Hinton (Eds.), Proceedings of the Computational Plasticity IV, CIMNE, Barcelona, Spain, 1995, pp. 547-561; F. Armero, K. Garikipati, Recent advances in the analysis and numerical simulation of strain localization in inelastic solids, in: D.R.J. Owen, E. Oñate, E. Hinton (Eds.), Proceedings of the Computational Plasticity IV, CIMNE, Barcelona, Spain, 1995, pp. 547-561 [25] K.R. Garikipati, On Strong Discontinuities in Inelastic Solids and Their Numerical Simulation, Ph.D. Thesis, Stanford University, Stanford, California, 1996; K.R. Garikipati, On Strong Discontinuities in Inelastic Solids and Their Numerical Simulation, Ph.D. Thesis, Stanford University, Stanford, California, 1996 · Zbl 0924.73084 [26] Larsson, R.; Runesson, K.; Sture, S., Embedded localization band in undrained soil based on regularized strong discontinuity theory and FE analysis, Int. J. Solids Struc., 33, 3081-3101 (1996) · Zbl 0919.73279 [27] Larsson, R.; Runesson, K.; Ottosen, N. S., Discontinuous displacement approximation for capturing plastic localization, Int. J. Numer. Methods Engrg., 36, 2087-2105 (1993) · Zbl 0794.73074 [28] J. Oliver, M. Cervera, O. Manzoli, On the use of \(J_2\); J. Oliver, M. Cervera, O. Manzoli, On the use of \(J_2\) [29] Simo, J. C.; Rifai, M. S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Methods Engrg., 29, 1595-1638 (1990) · Zbl 0724.73222 [30] I. Stakgold, Green’s Functions and Boundary Value Problems, second Ed., Wiley, New York, 1998; I. Stakgold, Green’s Functions and Boundary Value Problems, second Ed., Wiley, New York, 1998 · Zbl 0897.35001 [31] Borja, R. I.; Wren, J. R., Discrete micromechanics of elastoplastic crystals, Int. J. Numer. Methods Engrg., 36, 3815-3840 (1993) · Zbl 0812.73055 [32] Runesson, K.; Peric, D.; Sture, S., Discontinuous bifurcations of elastic-plastic solutions at plane stress and plane strain, Int. J. Plasticity, 7, 99-121 (1991) · Zbl 0761.73035 [33] Arthur, J. R.F.; Dunstan, T.; Al-ani, Q. A.L. J.; Assadi, A., Plastic deformation and failure in granular media, Géotechnique, 27, 53-74 (1977) [34] Vermeer, P. A.; de Borst, R., Nonassociated plasticity for soils, concrete and rock, Heron, 29, 1-64 (1984) [35] Vardoulakis, I.; Graf, B., Calibration of constitutive models from granular materials from data from biaxial experiments, Géotechnique, 35, 299-317 (1985) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.