zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The study of quasi-wavelets based numerical method applied to Burgers equations. (English) Zbl 1003.76070
Summary: We present a quasi-wavelet based numerical method for solving the evolution of solutions of nonlinear partial differential Burgers equation. The quasi-wavelet based method is used to discretize spatial derivatives, while a fourth-order Runge-Kutta method is adopted to deal with temporal discretization. The calculations are conducted for Reynolds numbers ranging from 10 to $\infty$. The comparisons of present results with analytical solutions show that the quasi-wavelet based numerical method has distinctive local property, and it is efficient and robust for numerical solution of Burgers equation.

76M25Other numerical methods (fluid mechanics)
76M20Finite difference methods (fluid mechanics)
76D99Incompressible viscous fluids
Full Text: DOI
[1] Morlet J, Arens G, Fourgeau E, et al. Wave propagation and sampling theory and complex waves [J].Geophysics, 1982,47(2): 222--236. · doi:10.1190/1.1441329
[2] Chui C K.An Introduction to Wavelets [M]. San Diego: Academic Press, 1992. · Zbl 0925.42016
[3] Wickerhauser M VAdapted Wavelet Analysis From Theory to Softwave [M]. London: Chapman & Hall, 1995.
[4] Cohen A, Ryan R D.Wavelets and Multiscales Signal Processing [M]. London: Chapman & Hall, 1995. · Zbl 0848.42021
[5] Qian S, Weiss J. Wavelet and the numerical solution of partial differential equations[J].J. Comput Phys, 1993,106(1): 155--175. · Zbl 0771.65072 · doi:10.1006/jcph.1993.1100
[6] Vasilyev O V, Paolucci S. A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in finite domain[J].J Comput Phys, 1996,125(2): 498--512. · Zbl 0847.65073 · doi:10.1006/jcph.1996.0111
[7] WANG Cheng, The integral equations’ solution of N-S equations under low Reynolds number--an application of Gaussian wavelet analysis[D]. Ph D thesis. Shanghai: Shanghai Jiaotong University, 1997. (in Chinese)
[8] Prosser R, Cant R S. On the use of wavelets in computational combustion[J].J Comput Phys, 1998,147(2): 337--361. · Zbl 0937.76063 · doi:10.1006/jcph.1998.6092
[9] Haar A. Zer theorie der orthogonalen funktionensysteme[J].Math Annal, 1910,69(3): 331--371. · Zbl 41.0469.03 · doi:10.1007/BF01456326
[10] Mallat S. Multiresolution approximations and wavelet orthonormal bases ofL 2(R) [J].Transactions of the American Mathematical Society, 1989,315(1): 68--87.
[11] Wei G W, Zhang D S, Kouri D J. Lagrange distributed approximating functionals [J].Phys Rev Lett, 1997,79(5): 775--779. · doi:10.1103/PhysRevLett.79.775
[12] Wei G W, Quasi wavelets and quasi interpolating wavelets [J].Chem Phys Lett, 1998,296(3--4): 215--222. · doi:10.1016/S0009-2614(98)01061-6
[13] Wei G W. Discrete singular convolution for the Fokker-Planck equation [J].J Chem Phys, 1999,110(18): 8930--8942. · doi:10.1063/1.478812
[14] Cole J D, On a quasi-linear parabolic equation occurring in aerodynamics [J].Quart Appl Math, 1951,9(2): 225--236. · Zbl 0043.09902
[15] Basdevant C, Deville M, Haldenwang P, et al. Spectral and finite difference solutions of the Burgers equation [J].Comput & Fluids, 1986,14(1): 23. · Zbl 0612.76031 · doi:10.1016/0045-7930(86)90036-8