×

Bound states of strings and \(p\)-branes. (English) Zbl 1003.81527

Summary: The recent discovery of an explicit conformal field theory description of Type II \(p\)-branes makes it possible to investigate the existence of bound states of such objects. In particular, it is possible with reasonable precision to verify the prediction that the Type IIB superstring in ten dimensions has a family of soliton and bound state strings permuted by SL\((2,\mathbb{Z})\). The space-time coordinates enter tantalizingly in the formalism as non-commuting matrices.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Townsend, P., The eleven-dimensional super-membrane revisited, Phys. lett. B, 350, 184, (1995)
[2] Witten, E., String theory dynamics in various dimensions, Nucl. phys. B, 443, 85, (1995) · Zbl 0990.81663
[3] Strominger, A., Massless black holes and conifolds in string theory, Nucl. phys. B, 451, 96, (1995) · Zbl 0925.83071
[4] Hull, C.; Townsend, P., Unity of superstring dualities, Nucl. phys. B, 438, 109, (1995) · Zbl 1052.83532
[5] Sen, A., Dyon-monopole bound states, self-dual harmonic forms on the multi-monopole moduli space, and SL(2,Z) invariance in string theory, Phys. lett. B, 329, 217, (1994) · Zbl 1190.81113
[6] J.H. Schwarz, An SL(2,Z) multiplet of type II superstrings, hep-th/9508143; Superstring dualities, hep-th/9509148.
[7] J. Polchinski, Dirichlet branes and Ramond-Ramond charges, hep-th/9510017. · Zbl 1020.81797
[8] Dai, J.; Leigh, R.G.; Polchinski, J., New connections between string theories, Mod. phys. lett. A, 4, 2073, (1989)
[9] Polchinski, J., Combinatorics of boundaries in string theory, Phys. rev. D, 50, 6041, (1994)
[10] Horava, P.; Horava, P., Background duality of open string models, Nucl. phys. B, Phys. lett. B, 321, 251, (1989)
[11] Green, M.B., Space-time duality and Dirichlet string theory, Phys. lett. B, 266, 325, (1991)
[12] Sagnotti, A., Open strings and their symmetry groups, (), 527
[13] Leigh, R., Dirac-Born-Infeld action from Dirichlet sigma model, Mod. phys. lett. A, 4, 2767, (1989)
[14] Crenuner, E.; Scherk, J., Spontaneous dynamical breaking of gauge symmetry in dual models, Nucl. phys. B, 72, 117, (1974)
[15] Coleman, S., More about the massive Schwinger model, Ann. phys., 101, 239, (1976)
[16] Witten, E., Dyons of charge /2π, Phys. lett. B, 86, 283, (1979)
[17] Witten, E., Theta vacua in two-dimensional quantum chromodynamics, Nuevo cimento A, 51, 325, (1979)
[18] J.A. Harvey and J.P. Gauntlett, S-duality and the dyon spectrum in N = 2 super-Yang-Mills theory, hep-th / 9508156. · Zbl 1004.81559
[19] S. Sethi, M. Stern and E. Zaslow, Monopole and dyon bound states in N = 2 supersymmetric Yang-Mills theories, hep-th/9508117. · Zbl 1003.81560
[20] Vafa, C.; Witten, E., A strong coupling test of S-duality, Nucl. phys. B, 431, 3, (1994) · Zbl 0964.81522
[21] Donagi, R.; Witten, E., Supersymmetric Yang-Mills theory and integrable systems, Nucl. phys. B, 460, 299, (1996), preceding article in this issue · Zbl 0996.37507
[22] Strominger, A., Heterotic solitons, Nucl. phys. B, 343, 167, (1990)
[23] Callan, C.G.; Harvey, J.A.; Strominger, A., World-sheet approach to heterotic instantons and solitons, Nucl. phys. B, 359, 611, (1991)
[24] Duff, M.J.; Khuri, R.R.; Lu, J.X., String solitons, Phys. rep., 259, 213-326, (1995)
[25] Alvarez-Gaumé, L.; Witten, E., Gravitational anomalies, Nucl. phys. B, 234, 269, (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.