×

Counting the local fields in sine-Gordon theory. (English) Zbl 1003.81545

Summary: In terms of the form-factor bootstrap we describe all the local fields in SG theory and check the agreement with the free fermion case. We discuss the interesting structure responsible for counting the local fields.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
35Q55 NLS equations (nonlinear Schrödinger equations)
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Babelon, O.; Bernard, D., Commun. Math. Phys., 149, 279 (1992) · Zbl 0755.58053
[2] Bernard, D.; LeClair, A., Phys. Lett. B, 247, 309 (1990)
[3] Cardy, J. L.; Mussardo, G., Nucl. Phys. B, 340, 387 (1990)
[4] Delfino, G.; Mussardo, G.; Simonetti, P., Correlation functions along a massless flow (1994), preprint ISAS/EP/94/152
[5] Frenkel, I. B.; Reshetikhin, N. Yu., Commun. Math. Phys., 146, 1 (1992) · Zbl 0760.17006
[6] Jimbo, M.; Miwa, T., Algebraic analysis of solvable lattice models, (CBMS Regional Conference in Mathematics. AMS, Vol. 85 (1994)), and references therein · Zbl 0526.17008
[7] Jimbo, M.; Kojima, T.; Miwa, T.; Quano, Y-H., J. Phys. A, 27, 3267 (1994) · Zbl 0842.17030
[8] Koubek, A., The space of local operators in the perturbated conformal field theory (1994), Preprint DAMPT-HEP-94/85
[9] Koubek, A.; Mussardo, G., Phys. Lett. B, 311, 193 (1993)
[10] LeClair, A., Nucl. Phys. B, 415, 734 (1994) · Zbl 1007.81501
[11] Lukyanov, S., Phys. Lett. B, 235, 409 (1994)
[12] Reshetikhin, N. J.; Smirnov, F. A., Commun. Math. Phys., 131, 157 (1990) · Zbl 0723.35077
[13] Smirnov, F. A., Form factors in completely integrable models of quantum field theory, (Adv. Series in Math. Phys., Vol. 14 (1992), World Scientific: World Scientific Singapore) · Zbl 0788.46077
[14] Smirnov, F. A., Int. J. Math. Phys. A, 7, Suppl B 1, 813 (1992) · Zbl 0925.17027
[15] Smirnov, F. A., Commun. Math. Phys., 155, 459 (1993) · Zbl 0787.35106
[16] Smirnov, F. A., On the deformation of abelian integrals., q-alg 9501001, Lett. Math. Phys. (1995), to be published in
[17] Smirnov, F. A., Int. J. Math. Phys. A, 9, 5121 (1994) · Zbl 0985.81719
[18] Zamolodchikov, A. B.; Zamolodchikov, Al. B., Ann. Phys., 120, 253 (1979)
[19] Zamolodchikov, A. B.; Zamolodchikov, Al. B., Nucl. Phys. B, 379, 602 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.