×

Variable effort harvesting models in random environments: generalization to density-dependent noise intensities. (English) Zbl 1003.92027

Summary: In ibid. 156, No. 1-2, 1-19 (1999; Zbl 0953.92029), we have studied quite general stochastic differential equation models for the growth of populations subjected to harvesting in a random environment. We have obtained conditions for non-extinction and for the existence of stationary distributions (as well as expressions for such distributions) similar to conditions for non-extinction and for the existence of a stable equilibrium in the corresponding deterministic model. The models were quite general, considering density-dependent natural growth functions and harvesting policies of very general form, so that our results would be model independent and provide minimal requirements for the choice of a wise density-dependent harvesting policy.
Those models, however, although quite general on all other respects, have a serious limitation. In fact, the ways environmental fluctuations affect the population per capita growth rate are poorly known and those models only considered two possible ways, namely the noise intensity could be constant or proportional to that rate. To overcome this limitation, we generalize the previous results to density-dependent positive noise intensities of very general form so that they also become independent from the way environmental fluctuations affect population growth rates.

MSC:

92D40 Ecology
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)

Citations:

Zbl 0953.92029
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Braumann, C. A., Variable effort fishing models in random environments, Math. Biosci., 156, 1 (1999) · Zbl 0953.92029
[2] Beddington, J. R.; May, R. M., Harvesting natural populations in a randomly fluctuating environment, Science, 197, 463 (1977)
[3] C.A. Braumann, Pescar num mundo aleatório: um modelo usando equações diferenciais estocásticas, in: Proc. VIII Jornadas Luso-Espanholas de Matemática, Universidade de Coimbra, vol. II, Coimbra, 1981, p. 301; C.A. Braumann, Pescar num mundo aleatório: um modelo usando equações diferenciais estocásticas, in: Proc. VIII Jornadas Luso-Espanholas de Matemática, Universidade de Coimbra, vol. II, Coimbra, 1981, p. 301
[4] Braumann, C. A., Stochastic differential equation models of fisheries in an uncertain world: extinction probabilities, optimal fishing effort, and parameter estimation, (Capasso, V.; Grosso, E.; Paveri-Fontana, L. S., Mathematics in Biology and Medicine (1985), (Lecture Notes in Biomathematics 57), Springer: (Lecture Notes in Biomathematics 57), Springer Berlin), 201 · Zbl 0565.92019
[5] Braumann, C. A., General models of fishing with random growth parameters, (Demongeot, J.; Capasso, V., Mathematics Applied to Biology and Medicine (1993), Wuerz: Wuerz Winnipeg, Canada), 155
[6] Braumann, C. A., Pesca de esforço constante em ambiente aleatório, (Vasconcelos, R.; etal., A Estatı́stica a Decifrar o Mundo (1997), Sociedade Portuguesa de Estatı́stica and Edições Salamandra: Sociedade Portuguesa de Estatı́stica and Edições Salamandra Lisbon), 291
[7] Dennis, B.; Patil, G. P., The gamma distribution and weighted multimodal gamma distributions as models of population abundance, Math. Biosci., 68, 187 (1984) · Zbl 0536.92025
[8] Gleit, A., Optimal harvesting in continuous time with stochastic growth, Math. Biosci., 41, 112 (1978) · Zbl 0405.92013
[9] May, R. M.; Beddington, J. R.; Horwood, J. H.; Shepherd, J. G., Exploiting natural populations in an uncertain world, Math. Biosci., 42, 219 (1978)
[10] Arnold, L., Stochastic Differential Equations: Theory and Applications (1974), Wiley: Wiley New York · Zbl 0278.60039
[11] Øksendal, B., Stochastic Differential Equations: An Introduction with Applications (1998), Springer: Springer Berlin · Zbl 0897.60056
[12] Braumann, C. A., Applications of stochastic differential equations to population growth, (Bainov, D., Proceedings of the Ninth International Colloquium on Differential Equations (1999), VSP: VSP Utrecht), 47 · Zbl 0943.60043
[13] Braumann, C. A., Population growth in random environments, Bull. Mathem. Biol., 45, 635 (1983) · Zbl 0511.92017
[14] Turelli, M., Random environments and stochastic calculus, Theor. Pop. Biol., 12, 140 (1977) · Zbl 0444.92013
[15] Turelli, M., A reexamination of stability in randomly varying environments with comments on the stochastic theory of limiting similarity, Theor. Pop. Biol., 13, 244 (1978) · Zbl 0407.92019
[16] Braumann, C. A., Estimação de parâmetros em modelos de crescimento e pesca em ambientes aleatórios, (Branco, J.; Gomes, P.; Prata, J., Bom Senso e Sensibilidade, Traves Mestras da Estatı́stica (1996), Sociedade Portuguesa de Estatı́stica and Edições Salamandra: Sociedade Portuguesa de Estatı́stica and Edições Salamandra Lisbon), 103
[17] Braumann, C. A., Parameter estimation in population growth and fishing models in random environments, Bull. Intl. Stat. Inst., LVII-CP1, 21 (1997)
[18] Lungu, E. M.; Øksendal, B., Optimal harvesting from a population in a stochastic crowded environment, Math. Biosci., 145, 47 (1997) · Zbl 0885.60052
[19] Alvarez, L. H.R.; Shepp, L. A., Optimal harvesting of stochastically fluctuating populations, J. Math. Biol., 37, 155 (1997) · Zbl 0940.92029
[20] Alvarez, L. H.R., On the option interpretation of rational harvesting planning, J. Math. Biol., 40, 383 (2000) · Zbl 0960.91058
[21] Braumann, C. A., Constant effort and constant quota fishing policies with cut-offs in a random environment, Nat. Res. Model., 14, 199 (2001) · Zbl 0986.91035
[22] Braumann, C. A., Threshold crossing probabilities for population growth models in random environments, J. Biol. Syst., 3, 505 (1995)
[23] Karlin, S.; Taylor, H. M., A Second Course in Stochastic Processes (1981), Academic Press: Academic Press Orlando, FL · Zbl 0469.60001
[24] Gihman, I. I.; Skorohod, A. V., Stochastic Differential Equations (1972), Springer: Springer Berlin · Zbl 0242.60003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.