×

zbMATH — the first resource for mathematics

Centennial history of Hilbert’s 16th Problem. (English) Zbl 1004.34017
Summary: The second part of Hilbert’s 16th problem deals with polynomial differential equations in the plane. It remains unsolved even for quadratic polynomials. There were several attempts to solve it that failed. Yet the problem inspired significant progress in the geometric theory of planar differential equations, as well as bifurcation theory, normal forms, foliations and some topics in algebraic geometry. The dramatic history of the problem, as well as related developments, are presented below.

MSC:
34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34C08 Ordinary differential equations and connections with real algebraic geometry (fewnomials, desingularization, zeros of abelian integrals, etc.)
34-03 History of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maĭer, Theory of bifurcations of dynamic systems on a plane, Halsted Press [A division of John Wiley & Sons], New York-Toronto, Ont.; Israel Program for Scientific Translations, Jerusalem-London, 1973. Translated from the Russian.
[2] V. I. Arnol\(^{\prime}\)d, Geometrical methods in the theory of ordinary differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 250, Springer-Verlag, New York-Berlin, 1983. Translated from the Russian by Joseph Szücs; Translation edited by Mark Levi.
[3] V. Arnold, V. Afrajmovich, Yu. Ilyashenko, L. Shil’nikov, Bifurcation theory and catastrophe theory, Translated from the 1986 Russian original Enciclopaedia Math. Sci., Dynamical systems. V, Springer-Verlag, Berlin, 1999. CMP 2000:07
[4] Особенности дифференцируемых отображений. ИИ, ”Наука”, Мосцощ, 1984 (Руссиан). Монодромия и асимптотики интегралов [Монодромы анд тхе асымптотиц бехавиор оф интегралс].
[5] V. I. Arnol\(^{\prime}\)d and Yu. S. Il\(^{\prime}\)yashenko, Ordinary differential equations, Current problems in mathematics. Fundamental directions, Vol. 1, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985, pp. 7 – 149, 244 (Russian).
[6] Joan C. Artés, Robert E. Kooij, and Jaume Llibre, Structurally stable quadratic vector fields, Mem. Amer. Math. Soc. 134 (1998), no. 639, viii+108. · Zbl 0991.34049 · doi:10.1090/memo/0639 · doi.org
[7] I. Bendixson, Sur les courbes définies par des équations différentielles, Acta Math. 24 (1901), 1-88. · JFM 31.0328.03
[8] N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, American Math. Soc. Translation 1954 (1954), 19. · Zbl 0059.08201
[9] Lipman Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960), 94 – 97. · Zbl 0090.05101
[10] M. Briskin, J.-P. Francoise, and Y. Yomdin, Center conditions, compositions of polynomials and moments on algebraic curves, Ergodic Theory Dynam. Systems 19 (1999), no. 5, 1201 – 1220. · Zbl 0990.34017 · doi:10.1017/S0143385799141737 · doi.org
[11] F. S. Berezovskaya and N. B. Medvedeva, The asymptotics of the return map of a singular point with fixed Newton diagram, J. Soviet Math. 60 (1992), no. 6, 1765 – 1781. · Zbl 0784.34025 · doi:10.1007/BF01102588 · doi.org
[12] R. I. Bogdanov, The versal deformation of a singular point of a vector field on the plane in the case of zero eigenvalues, Trudy Sem. Petrovsk. Vyp. 2 (1976), 37 – 65 (Russian).
[13] R. I. Bogdanov, Bifurcations of a limit cycle of a certain family of vector fields on the plane, Trudy Sem. Petrovsk. Vyp. 2 (1976), 23 – 35 (Russian).
[14] R. I. Bogdanov, Local orbital normal forms of vector fields on the plane, Trudy Sem. Petrovsk. 5 (1979), 51 – 84 (Russian).
[15] R. I. Bogdanov, Invariants of elementary singular points on the plane, Uspekhi Mat. Nauk 40 (1985), no. 3(243), 199 – 200 (Russian).
[16] A. D. Brjuno, The normal form of differential equations, Dokl. Akad. Nauk SSSR 157 (1964), 1276 – 1279 (Russian).
[17] A. D. Brjuno, Analytic form of differential equations. I, II, Trudy Moskov. Mat. Obšč. 25 (1971), 119 – 262; ibid. 26 (1972), 199 – 239 (Russian).
[18] A. D. Brjuno, Analytic form of differential equations. I, II, Trudy Moskov. Mat. Obšč. 25 (1971), 119 – 262; ibid. 26 (1972), 199 – 239 (Russian).
[19] Kuo-Tsai Chen, Equivalence and decomposition of vector fields about an elementary critical point, Amer. J. Math. 85 (1963), 693 – 722. · Zbl 0119.07505 · doi:10.2307/2373115 · doi.org
[20] César Camacho, Problems on limit sets of foliations on complex projective spaces, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 1235 – 1239. · Zbl 0746.58067
[21] A. Candel and X. Gómez-Mont, Uniformization of the leaves of a rational vector field, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 4, 1123 – 1133 (English, with English and French summaries). · Zbl 0832.32017
[22] Marc Chaperon, On the local classification of holomorphic vector fields, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 96 – 103. · doi:10.1007/BFb0061412 · doi.org
[23] C. J. Christopher and N. G. Lloyd, Polynomial systems: a lower bound for the Hilbert numbers, Proc. Roy. Soc. London Ser. A 450 (1995), no. 1938, 219 – 224. · Zbl 0839.34033 · doi:10.1098/rspa.1995.0081 · doi.org
[24] César Camacho, Nicolaas H. Kuiper, and Jacob Palis, La topologie du feuilletage d’un champ de vecteurs holomorphes près d’une singularité, C. R. Acad. Sci. Paris Sér. A-B 282 (1976), no. 17, Ai, A959 – A961 (French, with English summary). · Zbl 0353.32015
[25] Shui-Nee Chow, Cheng Zhi Li, and Duo Wang, Normal forms and bifurcation of planar vector fields, Cambridge University Press, Cambridge, 1994. · Zbl 0804.34041
[26] D. Cerveau and R. Moussu, Groupes d’automorphismes de (\?,0) et équations différentielles \?\?\?+\cdots=0, Bull. Soc. Math. France 116 (1988), no. 4, 459 – 488 (1989) (French, with English summary). · Zbl 0696.58011
[27] W. A. Coppel, A survey of quadratic systems, J. Differential Equations 2 (1966), 293 – 304. · Zbl 0143.11903 · doi:10.1016/0022-0396(66)90070-2 · doi.org
[28] César Camacho and Paulo Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. (2) 115 (1982), no. 3, 579 – 595. · Zbl 0503.32007 · doi:10.2307/2007013 · doi.org
[29] C. Camacho, A. Scardua, Holomorphic foliations with Liouvillian first integrals, Ergodic Theory Dynam. Systems 21 (2001), no. 3, 717-756. · Zbl 1051.37022
[30] Lan Sun Chen and Ming Shu Wang, The relative position, and the number, of limit cycles of a quadratic differential system, Acta Math. Sinica 22 (1979), no. 6, 751 – 758 (Chinese, with English summary). · Zbl 0433.34022
[31] H. Dulac, Sur les cycles limite, Bull. Soc. Math France 51 (1923), 45-188. · JFM 49.0304.01
[32] Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970 (French). · Zbl 0244.14004
[33] Freddy Dumortier, Singularities of vector fields on the plane, J. Differential Equations 23 (1977), no. 1, 53 – 106. · Zbl 0346.58002 · doi:10.1016/0022-0396(77)90136-X · doi.org
[34] Freddy Dumortier, Chris Herssens, and Lawrence Perko, Local bifurcations and a survey of bounded quadratic systems, J. Differential Equations 165 (2000), no. 2, 430 – 467. · Zbl 0961.34029 · doi:10.1006/jdeq.2000.3777 · doi.org
[35] F. Dumortier, Yu. Ilyashenko, C. Rousseau, Normal forms near a saddle-node and applications to finite cyclicity of graphics, Preprint (2000), 29 pp. CRM-2697. · Zbl 1013.37044
[36] F. Dumortier, M. El Morsalani, and C. Rousseau, Hilbert’s 16th problem for quadratic systems and cyclicity of elementary graphics, Nonlinearity 9 (1996), no. 5, 1209 – 1261. · Zbl 0895.58046 · doi:10.1088/0951-7715/9/5/008 · doi.org
[37] F. Dumortier, R. Roussarie, and C. Rousseau, Hilbert’s 16th problem for quadratic vector fields, J. Differential Equations 110 (1994), no. 1, 86 – 133. · Zbl 0802.34028 · doi:10.1006/jdeq.1994.1061 · doi.org
[38] F. Dumortier, R. Roussarie, and C. Rousseau, Elementary graphics of cyclicity 1 and 2, Nonlinearity 7 (1994), no. 3, 1001 – 1043. · Zbl 0855.58043
[39] Freddy Dumortier, Robert Roussarie, and Jorge Sotomayor, Bifurcations of cuspidal loops, Nonlinearity 10 (1997), no. 6, 1369 – 1408. · Zbl 0908.58043 · doi:10.1088/0951-7715/10/6/001 · doi.org
[40] F. Dumortier, R. Roussarie, J. Sotomayor, and H. Żołądek, Bifurcations of planar vector fields, Lecture Notes in Mathematics, vol. 1480, Springer-Verlag, Berlin, 1991. Nilpotent singularities and Abelian integrals. · Zbl 0755.58002
[41] Jean Écalle, Les fonctions résurgentes. Tome I, Publications Mathématiques d’Orsay 81 [Mathematical Publications of Orsay 81], vol. 5, Université de Paris-Sud, Département de Mathématique, Orsay, 1981 (French). Les algèbres de fonctions résurgentes. [The algebras of resurgent functions]; With an English foreword. Jean Écalle, Les fonctions résurgentes. Tome II, Publications Mathématiques d’Orsay 81 [Mathematical Publications of Orsay 81], vol. 6, Université de Paris-Sud, Département de Mathématique, Orsay, 1981 (French). Les fonctions résurgentes appliquées à l’itération. [Resurgent functions applied to iteration].
[42] Jean Écalle, Les fonctions résurgentes. Tome I, Publications Mathématiques d’Orsay 81 [Mathematical Publications of Orsay 81], vol. 5, Université de Paris-Sud, Département de Mathématique, Orsay, 1981 (French). Les algèbres de fonctions résurgentes. [The algebras of resurgent functions]; With an English foreword. Jean Écalle, Les fonctions résurgentes. Tome II, Publications Mathématiques d’Orsay 81 [Mathematical Publications of Orsay 81], vol. 6, Université de Paris-Sud, Département de Mathématique, Orsay, 1981 (French). Les fonctions résurgentes appliquées à l’itération. [Resurgent functions applied to iteration].
[43] Jean Écalle, Les fonctions résurgentes. Tome III, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 85, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985 (French). L’équation du pont et la classification analytique des objects locaux. [The bridge equation and analytic classification of local objects]. · Zbl 0602.30029
[44] Jean Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1992 (French, with French summary). · Zbl 1241.34003
[45] P. Elizarov, Yu. Ilyashenko, A. Shcherbakov, S. Voronin, Finitely generated groups of germs of one-dimensional conformal mappings, and invariants for complex singular points of analytic foliations of the complex plane, Nonlinear Stokes Phenomena, Amer. Math. Soc., Providence, RI, 1993, pp. 57-105. · Zbl 1010.32501
[46] Jean Écalle, Jean Martinet, Robert Moussu, and Jean-Pierre Ramis, Non-accumulation des cycles-limites. I, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 13, 375 – 377 (French, with English summary). Jean Écalle, Jean Martinet, Robert Moussu, and Jean-Pierre Ramis, Non-accumulation des cycles-limites. II, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 14, 431 – 434 (French, with English summary). · Zbl 0615.58011
[47] Jean Écalle, Jean Martinet, Robert Moussu, and Jean-Pierre Ramis, Non-accumulation des cycles-limites. I, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 13, 375 – 377 (French, with English summary). Jean Écalle, Jean Martinet, Robert Moussu, and Jean-Pierre Ramis, Non-accumulation des cycles-limites. II, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 14, 431 – 434 (French, with English summary). · Zbl 0615.58011
[48] R. Fedorov, Growth of the number of orbital topological types of planar polynomial vector fields modulo limit cycles, Moscow Math. J., to appear. · Zbl 1351.34029
[49] Armengol Gasull, Jaume Llibre, Víctor Mañosa, and Francesc Mañosas, The focus-centre problem for a type of degenerate system, Nonlinearity 13 (2000), no. 3, 699 – 729. · Zbl 0962.34067 · doi:10.1088/0951-7715/13/3/311 · doi.org
[50] Lubomir Gavrilov, Petrov modules and zeros of Abelian integrals, Bull. Sci. Math. 122 (1998), no. 8, 571 – 584. · Zbl 0964.32022 · doi:10.1016/S0007-4497(99)80004-9 · doi.org
[51] L. Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math. 143, no. 3 (2001), 449-497. CMP 2001:09
[52] A. M. Gabrièlov, Projections of semianalytic sets, Funkcional. Anal. i Priložen. 2 (1968), no. 4, 18 – 30 (Russian).
[53] A. A. Glutsyuk, Hyperbolicity of phase curves of a general polynomial vector field in \?\(^{n}\), Funktsional. Anal. i Prilozhen. 28 (1994), no. 2, 1 – 11, 95 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 28 (1994), no. 2, 77 – 84. · Zbl 0848.32032 · doi:10.1007/BF01076493 · doi.org
[54] A. A. Glutsyuk, Hyperbolicity of the leaves of a generic one-dimensional holomorphic foliation on a nonsingular projective algebraic variety, Tr. Mat. Inst. Steklova 213 (1997), no. Differ. Uravn. s Veshchestv. i Kompleks. Vrem., 90 – 111 (Russian); English transl., Proc. Steklov Inst. Math. 2(213) (1996), 83 – 103. · Zbl 0883.57027
[55] Alexey Glutsyuk, Nonuniformizable skew cylinders. A counterexample to the simultaneous uniformization problem, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 3, 209 – 214 (English, with English and French summaries). · Zbl 0987.32005 · doi:10.1016/S0764-4442(00)01843-7 · doi.org
[56] A. Glutsuk, Yu. Ilyashenko, Restricted version of the Infinitesimal Hilbert 16th problem, to appear. · Zbl 1134.34019
[57] É. Ghys, R. Langevin, and P. Walczak, Entropie géométrique des feuilletages, Acta Math. 160 (1988), no. 1-2, 105 – 142 (French). · Zbl 0666.57021 · doi:10.1007/BF02392274 · doi.org
[58] Xavier Gómez-Mont, The transverse dynamics of a holomorphic flow, Ann. of Math. (2) 127 (1988), no. 1, 49 – 92. · Zbl 0639.32013 · doi:10.2307/1971416 · doi.org
[59] Ana Guzmán and Christiane Rousseau, Genericity conditions for finite cyclicity of elementary graphics, J. Differential Equations 155 (1999), no. 1, 44 – 72. · Zbl 0930.34020 · doi:10.1006/jdeq.1998.3570 · doi.org
[60] John Guckenheimer, Hartman’s theorem for complex flows in the Poincaré domain, Compositio Math. 24 (1972), 75 – 82. · Zbl 0239.58007
[61] D. Hilbert, Mathematical problems, Reprinted from Bull. Amer. Math. Soc. 8 (1902), 437-479, in Bull. Amer. Math. Soc. 37 (2000), 407-436. CMP 2000:17 · JFM 33.0976.07
[62] Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109 – 203; ibid. (2) 79 (1964), 205 – 326. · Zbl 0122.38603
[63] Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109 – 203; ibid. (2) 79 (1964), 205 – 326. · Zbl 0122.38603
[64] E. I. Horozov, Versal deformations of equivariant vector fields for cases of symmetry of order 2 and 3, Trudy Sem. Petrovsk. 5 (1979), 163 – 192 (Russian).
[65] Ju. S. Il\(^{\prime}\)jašenko, The appearance of limit cycles under a perturbation of the equation \?\?/\?\?=-\?_\?/\?_\?, where \?(\?,\?) is a polynomial, Mat. Sb. (N.S.) 78 (120) (1969), 360 – 373 (Russian).
[66] Ju. S. Il\(^{\prime}\)jašenko, An example of equations \?\?/\?\?=\?_\?(\?,\?)/\?_\?(\?,\?) having a countable number of limit cycles and arbitrarily high Petrovskiĭ-Landis genus, Mat. Sb. (N.S.) 80 (122) (1969), 388 – 404 (Russian).
[67] Ju. S. Iljašenko, Algebraic unsolvability and almost algebraic solvability of the problem for the center-focus, Funkcional. Anal. i Priložen. 6 (1972), no. 3, 30 – 37 (Russian).
[68] Ju. S. Il\(^{\prime}\)jašenko, Remarks on the topology of the singular points of analytic differential equations in a complex domain, and Ladis’ theorem, Funkcional. Anal. i Priložen. 11 (1977), no. 2, 28 – 38, 95 (Russian).
[69] Yu. S. Il\(^{\prime}\)yashenko, Topology of phase portraits of analytic differential equations on a complex projective plane, Trudy Sem. Petrovsk. 4 (1978), 83 – 136 (Russian).
[70] Yu. Ilyashenko, Global and local aspects of the theory of complex differential equations, Proceedings of International Congress of Mathematicians, Helsinki, 1978, v. II, Springer-Verlag, Berlin, 1979, pp. 821-826.
[71] Yu. Ilyashenko, Singular points and limit cycles of differential equations in the real and complex plane, Preprint NIVTS AN SSSR, Pushchino (1982), 38.
[72] Yu. S. Il\(^{\prime}\)yashenko, Limit cycles of polynomial vector fields with nondegenerate singular points on the real plane, Funktsional. Anal. i Prilozhen. 18 (1984), no. 3, 32 – 42 (Russian). · Zbl 0549.34033
[73] Yu. S. Il\(^{\prime}\)yashenko, Dulac’s memoir ”On limit cycles” and related questions of the local theory of differential equations, Uspekhi Mat. Nauk 40 (1985), no. 6(246), 41 – 78, 199 (Russian).
[74] Yu. S. Il\(^{\prime}\)yashenko, Finiteness theorems for limit cycles, Uspekhi Mat. Nauk 45 (1990), no. 2(272), 143 – 200, 240 (Russian); English transl., Russian Math. Surveys 45 (1990), no. 2, 129 – 203. · Zbl 0731.34027 · doi:10.1070/RM1990v045n02ABEH002335 · doi.org
[75] Yu. S. Il\(^{\prime}\)yashenko, Finiteness theorems for limit cycles, Translations of Mathematical Monographs, vol. 94, American Mathematical Society, Providence, RI, 1991. Translated from the Russian by H. H. McFaden.
[76] Yu. S. Il\(^{\prime}\)yashenko , Nonlinear Stokes phenomena, Advances in Soviet Mathematics, vol. 14, American Mathematical Society, Providence, RI, 1993.
[77] Yu. Ilyashenko, Hilbert-type numbers for Abel equations, growth and zeros of holomorphic functions, Nonlinearity 13 (2000), no. 4, 1337 – 1342. · Zbl 1016.34028 · doi:10.1088/0951-7715/13/4/319 · doi.org
[78] Yu. S. Ilyashenko and V. Yu. Kaloshin, Bifurcation of planar and spatial polycycles: Arnold’s program and its development, The Arnoldfest (Toronto, ON, 1997) Fields Inst. Commun., vol. 24, Amer. Math. Soc., Providence, RI, 1999, pp. 241 – 271. · Zbl 0987.37044
[79] Yu. S. Il\(^{\prime}\)yashenko and A. G. Khovanskiĭ, Galois groups, Stokes operators and a theorem of Ramis, Funktsional. Anal. i Prilozhen. 24 (1990), no. 4, 31 – 42, 96 (Russian); English transl., Funct. Anal. Appl. 24 (1990), no. 4, 286 – 296 (1991). · Zbl 0719.34013 · doi:10.1007/BF01077333 · doi.org
[80] Yu. Ilyashenko and Weigu Li, Nonlocal bifurcations, Mathematical Surveys and Monographs, vol. 66, American Mathematical Society, Providence, RI, 1999. · Zbl 1120.37308
[81] Yu. Ilyashenko, A. Panov, Some upper estimates of the number of limit cycles of planar vector fields with applications to the Lienard equation, to appear. · Zbl 1008.34027
[82] Yulij S. Ilyashenko and A. S. Pyartli, The monodromy group at infinity of a generic polynomial vector field on the complex projective plane, Russian J. Math. Phys. 2 (1994), no. 3, 275 – 315. · Zbl 0915.34005
[83] Yu. S. Il\(^{\prime}\)yashenko and A. S. Pyartli, Rational differential equations with a nonfree monodromy group at infinity, Tr. Mat. Inst. Steklova 213 (1997), no. Differ. Uravn. s Veshchestv. i Kompleks. Vrem., 56 – 73 (Russian); English transl., Proc. Steklov Inst. Math. 2(213) (1996), 50 – 67. · Zbl 0879.34005
[84] Ilia Itenberg and Eugeniĭ Shustin, Singular points and limit cycles of planar polynomial vector fields, Duke Math. J. 102 (2000), no. 1, 1 – 37. · Zbl 0953.34021 · doi:10.1215/S0012-7094-00-10211-6 · doi.org
[85] Yu. S. Il\(^{\prime}\)yashenko and S. Yu. Yakovenko, Finitely smooth normal forms of local families of diffeomorphisms and vector fields, Uspekhi Mat. Nauk 46 (1991), no. 1(277), 3 – 39, 240 (Russian); English transl., Russian Math. Surveys 46 (1991), no. 1, 1 – 43. · Zbl 0744.58006 · doi:10.1070/RM1991v046n01ABEH002733 · doi.org
[86] Zhi Yong Chen, Asymptotic behavior of the solutions to a class of second-order homogeneous linear differential equations, Math. Practice Theory 3 (1994), 57 – 60 (Chinese, with Chinese summary).
[87] Yuliĭ Il\(^{\prime}\)yashenko and Sergeĭ Yakovenko, Double exponential estimate for the number of zeros of complete abelian integrals and rational envelopes of linear ordinary differential equations with an irreducible monodromy group, Invent. Math. 121 (1995), no. 3, 613 – 650. · Zbl 0865.34007 · doi:10.1007/BF01884313 · doi.org
[88] Yu. Il\(^{\prime}\)yashenko and S. Yakovenko, Concerning the Hilbert sixteenth problem, Concerning the Hilbert 16th problem, Amer. Math. Soc. Transl. Ser. 2, vol. 165, Amer. Math. Soc., Providence, RI, 1995, pp. 1 – 19. · Zbl 0828.34020 · doi:10.1090/trans2/165/01 · doi.org
[89] Yuliĭ Il\(^{\prime}\)yashenko and Sergeĭ Yakovenko, Counting real zeros of analytic functions satisfying linear ordinary differential equations, J. Differential Equations 126 (1996), no. 1, 87 – 105. · Zbl 0847.34010 · doi:10.1006/jdeq.1996.0045 · doi.org
[90] A. Jacquemard, F. Z. Khechichine-Mourtada, and A. Mourtada, Algorithmes formels appliqués à l’étude de la cyclicité d’un polycycle algébrique générique à quatre sommets hyperboliques, Nonlinearity 10 (1997), no. 1, 19 – 53 (French, with English and French summaries). · Zbl 0907.58052 · doi:10.1088/0951-7715/10/1/003 · doi.org
[91] V. Kaloshin, Hilbert 16th problem and an estimate for cyclicity of an elementary polycycle, to appear. · Zbl 1087.34013
[92] A. G. Khovanskiĭ, Real analytic manifolds with the property of finiteness, and complex abelian integrals, Funktsional. Anal. i Prilozhen. 18 (1984), no. 2, 40 – 50 (Russian).
[93] A. G. Khovanskiĭ, Fewnomials, Translations of Mathematical Monographs, vol. 88, American Mathematical Society, Providence, RI, 1991. Translated from the Russian by Smilka Zdravkovska. · Zbl 0586.51015
[94] A. Kotova and V. Stanzo, On few-parameter generic families of vector fields on the two-dimensional sphere, Concerning the Hilbert 16th problem, Amer. Math. Soc. Transl. Ser. 2, vol. 165, Amer. Math. Soc., Providence, RI, 1995, pp. 155 – 201. · Zbl 0828.34023 · doi:10.1090/trans2/165/05 · doi.org
[95] M.G. Khudai-Verenov, A property of the solutions of a differential equation (Russian), Mat. Sb. 56 (1962), 301-308. · Zbl 0111.27902
[96] N. N. Ladis, Topological equivalence of hyperbolic linear systems, Differencial\(^{\prime}\)nye Uravnenija 13 (1977), no. 2, 255 – 264, 379 – 380 (Russian). · Zbl 0403.34034
[97] Leau, Étude sur les équation fonctionelles à une ou plusieère variables, Ann. Fac. Sci. Toulouse 11 (1897), E1-E110.
[98] Solomon Lefschetz, On a theorem of Bendixson, J. Differential Equations 4 (1968), 66 – 101. · Zbl 0172.11402 · doi:10.1016/0022-0396(68)90049-1 · doi.org
[99] E. Leontovich, On the generation of limit cycles from separatrices (Russian), Doklady Akad. Nauk SSSR (N.S.) 78 (1951), 641-644.
[100] A. Lins, W. de Melo, and C. C. Pugh, On Liénard’s equation, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976) Springer, Berlin, 1977, pp. 335 – 357. Lecture Notes in Math., Vol. 597.
[101] Alcides Lins Neto, On the number of solutions of the equation \?\?/\?\?=\sum \(^{n}\)\?\?\(_{0}\)\?\?(\?)\?^\?, 0\le \?\le 1, for which \?(0)=\?(1), Invent. Math. 59 (1980), no. 1, 67 – 76. · Zbl 0448.34012 · doi:10.1007/BF01390315 · doi.org
[102] Alcides Lins Neto, Simultaneous uniformization for the leaves of projective foliations by curves, Bol. Soc. Brasil. Mat. (N.S.) 25 (1994), no. 2, 181 – 206. · Zbl 0821.32027 · doi:10.1007/BF01321307 · doi.org
[103] A. Lins Neto, Uniformization and the Poincaré metric on the leaves of a foliation by curves, Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), no. 3, 351 – 366. · Zbl 0987.37039 · doi:10.1007/BF01241634 · doi.org
[104] F. Loray, J.C. Rebello, Stably chaotic rational vector fields on \( \mathbb{CP}^{n} \), Stony Brook IMS preprint no. 2000/5 (2000).
[105] A. Lins Neto, P. Sad, and B. Scárdua, On topological rigidity of projective foliations, Bull. Soc. Math. France 126 (1998), no. 3, 381 – 406 (English, with English and French summaries). · Zbl 0933.32043
[106] Bernard Malgrange, Travaux d’Écalle et de Martinet-Ramis sur les systèmes dynamiques, Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 59 – 73 (French).
[107] Pavao Mardešić, An explicit bound for the multiplicity of zeros of generic Abelian integrals, Nonlinearity 4 (1991), no. 3, 845 – 852. · Zbl 0741.58043
[108] J.-F. Mattei and R. Moussu, Holonomie et intégrales premières, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 4, 469 – 523 (French). · Zbl 0458.32005
[109] Jean Martinet and Jean-Pierre Ramis, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Inst. Hautes Études Sci. Publ. Math. 55 (1982), 63 – 164 (French). · Zbl 0546.58038
[110] Jean Martinet and Jean-Pierre Ramis, Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 4, 571 – 621 (1984) (French). · Zbl 0534.34011
[111] N. B. Medvedeva, The principal term of the monodromy transformation of a monodromic singular point is linear, Sibirsk. Mat. Zh. 33 (1992), no. 2, 116 – 124, 221 (Russian); English transl., Siberian Math. J. 33 (1992), no. 2, 280 – 288. · Zbl 0798.34036 · doi:10.1007/BF00971099 · doi.org
[112] N. B. Medvedeva, The principal term of the asymptotics of the monodromy transformation: computation by the Newton diagram, Tr. Mat. Inst. Steklova 213 (1997), no. Differ. Uravn. s Veshchestv. i Kompleks. Vrem., 226 – 238 (Russian); English transl., Proc. Steklov Inst. Math. 2(213) (1996), 212 – 223. · Zbl 0889.34032
[113] N. Medvedeva, E. Mazaeva, Sufficient condition for a monodromic singular point to be a focus, Transactions of Moscow Math. Soc. (to appear). · Zbl 1330.37024
[114] Abderaouf Mourtada, Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan. Algorithme de finitude, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 3, 719 – 753 (French, with English summary). · Zbl 0725.58032
[115] R. Moussu and C. Roche, Théorie de Hovanskiĭ et problème de Dulac, Invent. Math. 105 (1991), no. 2, 431 – 441 (French). · Zbl 0769.58050 · doi:10.1007/BF01232274 · doi.org
[116] Jean-François Mattei and Eliane Salem, Complete systems of topological and analytical invariants for a generic foliation of (\?²,0), Math. Res. Lett. 4 (1997), no. 1, 131 – 141. · Zbl 0882.32024 · doi:10.4310/MRL.1997.v4.n1.a12 · doi.org
[117] B. Muller, On the density of solutions of an equation in \( \mathbb{C}P^{2}\), Mat. Sbornik 98, no. 3 (1975), 325-338.
[118] Jesús Muciño-Raymundo, Deformations of holomorphic foliations having a meromorphic first integral, J. Reine Angew. Math. 461 (1995), 189 – 219. · Zbl 0816.32022 · doi:10.1515/crll.1995.461.189 · doi.org
[119] Isao Nakai, Separatrices for nonsolvable dynamics on \?,0, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 2, 569 – 599 (English, with English and French summaries). · Zbl 0804.57022
[120] V. A. Naĭshul\(^{\prime}\), Topological invariants of analytic and area-preserving mappings and their application to analytic differential equations in \?² and \?\?², Trudy Moskov. Mat. Obshch. 44 (1982), 235 – 245 (Russian). · Zbl 0513.58039
[121] D. Novikov and S. Yakovenko, Simple exponential estimate for the number of real zeros of complete Abelian integrals, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 4, 897 – 927 (English, with English and French summaries). · Zbl 0832.58028
[122] D. Novikov and S. Yakovenko, Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems, Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 55 – 65. · Zbl 0922.58076
[123] D. Novikov and S. Yakovenko, Trajectories of polynomial vector fields and ascending chains of polynomial ideals, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 2, 563 – 609 (English, with English and French summaries). · Zbl 0947.37008
[124] D. Novikov, S. Yakovenko, Redundant Picard-Fuchs system for Abelian integrals, to appear. · Zbl 1011.37042
[125] Laura Ortíz-Bobadilla, Quadratic vector fields in \?\?² with two saddle-node type singularities at infinity, J. Dynam. Control Systems 1 (1995), no. 3, 295 – 317. · Zbl 0988.37065 · doi:10.1007/BF02269371 · doi.org
[126] A. A. Panov, Variety of Poincaré mappings for cubic equations with variable coefficients, Funktsional. Anal. i Prilozhen. 33 (1999), no. 4, 84 – 88 (Russian); English transl., Funct. Anal. Appl. 33 (1999), no. 4, 310 – 312 (2000). · Zbl 0955.34010 · doi:10.1007/BF02467118 · doi.org
[127] G. Petrov, Elliptic integrals and their nonoscillation (Russian), Funktsional. Anal. i Prilozhen. 20, no. 1 (1986), 46-49. · Zbl 0656.34017
[128] I. Petrovskii, E. Landis, On the number of limit cycles of the equation \(dy/dx=P(x,y)/\)\(Q(x,y)\), where \(P\) and \(Q\) are polynomials of 2nd degree (Russian), Mat. Sb. N.S. 37(79) (1955), 209-250.
[129] I. Petrovskii, E. Landis, On the number of limit cycles of the equation \(dy/dx=P(x,y)/\)\(Q(x,y)\), where \(P\) and \(Q\) are polynomials (Russian), Mat. Sb. N.S. 85 (1957), 149-168.
[130] Ricardo Pérez-Marco, Fixed points and circle maps, Acta Math. 179 (1997), no. 2, 243 – 294. · Zbl 0914.58027 · doi:10.1007/BF02392745 · doi.org
[131] I. A. Pushkar\(^{\prime}\), A multidimensional generalization of Il\(^{\prime}\)yashenko’s theorem on abelian integrals, Funktsional. Anal. i Prilozhen. 31 (1997), no. 2, 34 – 44, 95 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 31 (1997), no. 2, 100 – 108. · Zbl 0930.37036 · doi:10.1007/BF02466015 · doi.org
[132] A. Pyartli, Rational differential equations with a commutative monodromy group at infinity, Trans. Moscow Math. Soc. 61 (2000), 67-95. · Zbl 1013.34082
[133] R. Roussarie, On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields, Bol. Soc. Brasil. Mat. 17 (1986), no. 2, 67 – 101. · Zbl 0628.34032 · doi:10.1007/BF02584827 · doi.org
[134] R. Roussarie, A note on finite cyclicity property and Hilbert’s 16th problem, Dynamical systems, Valparaiso 1986, Lecture Notes in Math., vol. 1331, Springer, Berlin, 1988, pp. 161 – 168. · doi:10.1007/BFb0083072 · doi.org
[135] Robert Roussarie, Cyclicité finie des lacets et des points cuspidaux, Nonlinearity 2 (1989), no. 1, 73 – 117 (French, with English summary). · Zbl 0679.58037
[136] Robert Roussarie, Bifurcation of planar vector fields and Hilbert’s sixteenth problem, Progress in Mathematics, vol. 164, Birkhäuser Verlag, Basel, 1998. · Zbl 0898.58039
[137] C. Rousseau, G. Świrszcz, and H. Żołądek, Cyclicity of graphics with semi-hyperbolic points inside quadratic systems, J. Dynam. Control Systems 4 (1998), no. 2, 149 – 189. · Zbl 0989.37047 · doi:10.1023/A:1022887001627 · doi.org
[138] Steve Smale, Mathematical problems for the next century, Math. Intelligencer 20 (1998), no. 2, 7 – 15. · Zbl 0947.01011 · doi:10.1007/BF03025291 · doi.org
[139] A. P. Sadovskiĭ, A problem of distinguishing the center and focus for a case of a complex singular point, Differentsial\(^{\prime}\)nye Uravneniya 22 (1986), no. 5, 789 – 794, 916 (Russian).
[140] A. Seidenberg, Reduction of singularities of the differential equation \?\?\?=\?\?\?, Amer. J. Math. 90 (1968), 248 – 269. · Zbl 0159.33303 · doi:10.2307/2373435 · doi.org
[141] S. Shahshahani, Periodic solutions of polynomial first order differential equations, Nonlinear Anal. 5 (1981), no. 2, 157 – 165. · Zbl 0449.34027 · doi:10.1016/0362-546X(81)90041-9 · doi.org
[142] A. A. Shcherbakov, Density of the orbit of a pseudogroup of conformal mappings and generalization of the Khudaĭ-Verenov theorem, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4 (1982), 10 – 15, 84 (Russian, with English summary). · Zbl 0517.30009
[143] A. A. Shcherbakov, Topological and analytic conjugation of noncommutative groups of germs of conformal mappings, Trudy Sem. Petrovsk. 10 (1984), 170 – 196, 238 – 239 (Russian, with English summary). · Zbl 0568.30010
[144] Song Ling Shi, A concrete example of the existence of four limit cycles for plane quadratic systems, Sci. Sinica 23 (1980), no. 2, 153 – 158. · Zbl 0431.34024
[145] Michael F. Singer, Liouvillian first integrals of differential equations, Trans. Amer. Math. Soc. 333 (1992), no. 2, 673 – 688. · Zbl 0756.12006
[146] A. A. Shcherbakov, E. Rosales-González, and L. Ortiz-Bobadilla, Countable set of limit cycles for the equation \?\?/\?\?=\?_\?(\?,\?)/\?_\?(\?,\?), J. Dynam. Control Systems 4 (1998), no. 4, 539 – 581. · Zbl 0989.37048 · doi:10.1023/A:1021819201777 · doi.org
[147] Shlomo Sternberg, On the structure of local homeomorphisms of euclidean \?-space. II., Amer. J. Math. 80 (1958), 623 – 631. · Zbl 0083.31406 · doi:10.2307/2372774 · doi.org
[148] J. Seade, A. Verjovsky, Actions of discrete groups on complex projective spaces, Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998), Contemp. Math. 269, Amer. Math. Soc., Providence, RI, 2001, pp. 155-178. · Zbl 1161.32301
[149] Floris Takens, Forced oscillations and bifurcations, Applications of global analysis, I (Sympos., Utrecht State Univ., Utrecht, 1973) Math. Inst. Rijksuniv. Utrecht, Utrecht, 1974, pp. 1 – 59. Comm. Math. Inst. Rijksuniv. Utrecht, No. 3-1974. · Zbl 1156.37315
[150] Теория функций, 2нд ед., ”Наука”, Мосцощ, 1980 (Руссиан). Транслатед фром тхе Енглиш анд щитх а префаце бы В. А. Рохлин.
[151] S. I. Trifonov, Cyclicity of elementary polycycles of generic smooth vector fields, Tr. Mat. Inst. Steklova 213 (1997), no. Differ. Uravn. s Veshchestv. i Kompleks. Vrem., 152 – 212 (Russian); English transl., Proc. Steklov Inst. Math. 2(213) (1996), 141 – 199. · Zbl 0878.34021
[152] A. N. Varchenko, Estimation of the number of zeros of an abelian integral depending on a parameter, and limit cycles, Funktsional. Anal. i Prilozhen. 18 (1984), no. 2, 14 – 25 (Russian). · Zbl 0545.58038
[153] A. Verjovsky, Private communication.
[154] S. M. Voronin, Analytic classification of germs of conformal mappings (\?,0)\to (\?,0), Funktsional. Anal. i Prilozhen. 15 (1981), no. 1, 1 – 17, 96 (Russian). · Zbl 0463.30010
[155] Jean-Christophe Yoccoz, Théorème de Siegel, nombres de Bruno et polynômes quadratiques, Astérisque 231 (1995), 3 – 88 (French). Petits diviseurs en dimension 1.
[156] S. Yakovenko, A geometric proof of the Bautin theorem, Concerning the Hilbert 16th problem, Amer. Math. Soc. Transl. Ser. 2, vol. 165, Amer. Math. Soc., Providence, RI, 1995, pp. 203 – 219. · Zbl 0828.34026 · doi:10.1090/trans2/165/06 · doi.org
[157] Sergei Yakovenko, On functions and curves defined by ordinary differential equations, The Arnoldfest (Toronto, ON, 1997) Fields Inst. Commun., vol. 24, Amer. Math. Soc., Providence, RI, 1999, pp. 497 – 525. · Zbl 0949.34023
[158] Khenrik Zholondek, Versality of a family of symmetric vector fields on the plane, Mat. Sb. (N.S.) 120(162) (1983), no. 4, 473 – 499 (Russian).
[159] Henryk Żołądek, Bifurcations of certain family of planar vector fields tangent to axes, J. Differential Equations 67 (1987), no. 1, 1 – 55. · Zbl 0648.34068 · doi:10.1016/0022-0396(87)90138-0 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.