×

Imbalances in Arnoux-Rauzy sequences. (English) Zbl 1004.37008

Arnoux-Rauzy sequences were introduced in [P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexité \(2n+1\), Bull. Soc. Math. Fr. 119, No. 2, 199-215 (1991; Zbl 0789.28011)]. The authors formulated at this time the conjecture that these sequences can be obtained as codings of rotations on the two-dimensional torus. This conjecture is disproved in the paper under review, where the authors actually disprove a conjecture of X. Droubay, J. Justin and G. Pirillo [Theor. Comput. Sci. 255, No. 1-2, 539-553 (2001; Zbl 0981.68126)] by showing that these sequences are not necessarily \(N\)-balanced: recall that a sequence is \(N\)-balanced for some integer \(N\) if for each letter the numbers of occurrences of this letter in any two words in the sequence having the same length differ by at most \(N\). Sturmian sequences are known to be 1-balanced.
Note that several papers in the bibliography have appeared:
[3] in Bull. Belg. Math. Soc., Simon Stevenin 8, 181-207 (2001; Zbl 1007.37001);
[5] (with a slightly different title) in Discrete Math. 223, 27-53 (2002; Zbl 0970.68124);
[6] (with a slightly different title) in Trans. Am. Math. Soc. 353, 5121-5144 (2001; Zbl 1142.37302);
[11] in J. Théor. Nombrés Bordx. 13, 371-394 (2001; Zbl 1038.37010);
[12] in Theor. Comput. Sci. 255, 539-553 (2001; Zbl 0981.68126);
[15] in Ann. Inst. Fourier 51, 861-901 (2001; Zbl 1029.11036);
[22] in Acta Arith. 95, 195-224 (2000; Zbl 0968.28005);
[29] in Acta Arith. 95, 167-184 (2000; Zbl 0953.11007);
[30] in Acta Arith. 96, 261-278 (2001; Zbl 0973.11030).
Also note that [20] has appeared: Cambridge, 2002.

MSC:

37B10 Symbolic dynamics
68R15 Combinatorics on words
11B83 Special sequences and polynomials

References:

[1] [1] , Un exemple de semi-conjugaison entre un échange d’intervalles et une translation sur le tore, Bull. Soc. Math. France, 116 (1988), 489-500. · Zbl 0703.58045
[2] [2] , , , Discrete planes, ℤ2-actions, Jacobi-Perron algorithm and substitutions, preprint (1999).
[3] [3] , , Pisot substitutions and Rauzy fractals, preprint 98-18, Institut de Mathématiques de Luminy, Marseille (1998). · Zbl 1007.37001
[4] [4] , , Représentation géométrique de suites de complexité 2n + 1, Bull. Soc. Math. France, 119 (1991), 199-215. · Zbl 0789.28011
[5] [5] , , Tilings and rotations: a two-dimensional generalization of Sturmian sequences, preprint 97-19, Institut de Mathématiques de Luminy, Marseille (1997).
[6] [6] , , Geometric representations of Pisot substitutions, preprint (1999). · Zbl 1142.37302
[7] [7] , , , Fine and Wilf’s theorem for three periods and a generalization of Sturmian words, Theoret. Comp. Sci., 218 (1999), 83-94. · Zbl 0916.68114
[8] [8] , Weakly mixing transformations which are not strongly mixing, Proc. Amer. Math. Soc., 22 (1969), 559-562. · Zbl 0186.37203
[9] [9] , Fonctions de récurrence des suites d’Arnoux-Rauzy et réponse à une question d’Hedlund et Morse, preprint (1999).
[10] [10] , Algorithme d’approximation et propriétés ergodiques des suites d’Arnoux-Rauzy, preprint (1999).
[11] [11] , , , Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci, preprint 98-24, Institut de Mathématiques de Luminy, Marseille (1998).
[12] [12] , , , Episturmian words and some constructions of de Luca and Rauzy, Theoret. Comp. Sci., to appear. · Zbl 0981.68126
[13] [13] , Bounded remainder sets, Acta Arith., 61 (1992), 319-326. · Zbl 0774.11037
[14] [14] , Les transformations de Chacon : combinatoire, structure géométrique, lien avec les systèmes de complexité 2n + 1, Bull. Soc. Math. France, 123 (1995), 271-292. · Zbl 0855.28008
[15] [15] , , , Structure of three interval exchange transformations I: An arithmetic study, preprint 199/2000, Université François Rabelais, Tours (2000). · Zbl 1029.11036
[16] [16] , , , Structure of three interval exchange transformations II: A combinatorial study; ergodic and spectral properties, preprint (2000). · Zbl 1029.11036
[17] [17] , , Transcendence of numbers with a low complexity expansion, J. Number Theory, 67 (1997), 146-161. · Zbl 0895.11029
[18] [18] , , On Rauzy fractal, Japan J. Indust. Appl. Math., 8 (1991), 461-486. · Zbl 0734.28010
[19] [19] , On a conjecture of Erdös and Szüsz related to uniform distribution mod 1, Acta Arith., 12 (1966), 193-212. · Zbl 0144.28902
[20] [20] , Algebraic Combinatorics on Words, Chapter 2: Sturmian words, by J. Berstel, P. Séébold, to appear. · Zbl 1001.68093
[21] [21] , Propriétés arithmétiques et dynamiques du fractal de Rauzy, J. Th. Nombres de Bordeaux, 10 (1998), 135-162. · Zbl 0918.11048
[22] [28] , Applications of Lie Groups to Differential Equations, Springer Verlag, New-York, 1993. · Zbl 0968.28005
[23] [23] , , Symbolic dynamics, Amer. J. Math., 60 (1938), 815-866. · JFM 64.0798.04
[24] [24] , , Symbolic dynamics II: Sturmian sequences, Amer. J. Math., 62 (1940), 1-42. · JFM 66.0188.03
[25] [25] , Une généralisation du développement en fraction continue, Séminaire Delange - Pisot - Poitou, 1976-1977, Paris, exposé 15, 15-01-15-16. · Zbl 0369.28015
[26] [26] , Échanges d’intervalles et transformations induites, Acta Arith., 34 (1979), 315-328. · Zbl 0414.28018
[27] [27] , Nombres algébriques et substitutions, Bull. Soc. Math. France, 110 (1982), 147-178. · Zbl 0522.10032
[28] [28] , Ensembles à restes bornés, Séminaire de Théorie des Nombres de Bordeaux, 1983-1984, exposé 24, 24-01-24-12. · Zbl 0547.10044
[29] [29] , , A generalization of Sturmian sequences; combinatorial structure and transcendence, Acta Arith., to appear. · Zbl 0953.11007
[30] [30] , , Frequencies of factors in Arnoux-Rauzy sequences, in course of acceptation by Acta Arith. · Zbl 0973.11030
[31] [31] , Une généralisation du théorème de Lagrange sur le développement en fraction continue, C.R. Acad. Sci. Paris, Série I, 327 (1998), 527-530. · Zbl 1039.11500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.