×

zbMATH — the first resource for mathematics

Stable forms and special metrics. (English) Zbl 1004.53034
Fernández, Marisa (ed.) et al., Global differential geometry: the mathematical legacy of Alfred Gray. Proceedings of the international congress on differential geometry held in memory of Professor Alfred Gray, Bilbao, Spain, September 18-23, 2000. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 288, 70-89 (2001).
The author shows how certain diffeomorphism-invariant functionals in dimensions 6, 7, and 8 generate in a natural way special geometric structures in these dimensions, e.g. metrics of holonomy \(G_2\) and Spin(7), metrics with weak holonomy \(SU(3)\) and \(G_2\), and a new example in dimension 8. Contents include: an introduction, the linear algebra of stable forms, critical points, eight-manifolds with \(PSU(3)\) structure, constrained critical points, evolution equations, examples, and an appendix on the definition of volumes.
For the entire collection see [Zbl 0980.00033].

MSC:
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C29 Issues of holonomy in differential geometry
58E11 Critical metrics
58A10 Differential forms in global analysis
PDF BibTeX XML Cite
Full Text: arXiv
References:
[1] C. Bär, Real Killing spinors and holonomy, Comm. Math. Phys. 154 (1993), 509–521.
[2] H. Baum, Th. Friedrich, R. Grunewald, I. Kath, Twistor and Killing spinors on Riemannian manifolds, Teubner-Texte zur Mathematik, 124, B. G. Teubner, Stuttgart, 1991.
[3] C. P. Boyer, K. Galicki, B. M. Mann and E. G. Rees, Compact 3- Sasakian 7-manifolds with arbitrary second Betti number, Inventiones Mathematicae, 131, (1998), 321-344.
[4] A. Brandhuber, J. Gomis, S. Gubser and S. Gukov, Gauge theory at large N and new G 2 holonomy metrics, hep-th/0106034
[5] M. Čvetic, G. W. Gibbons, H. Lü, C. N. Pope, New cohomogeneity one metrics with Spin(7) holonomy, math.DG/0105119
[6] M. Fernández and A. Gray, Riemannian manifolds with structure group G 2 , Ann. Mat. Pura Appl. 132 (1982), 19–45 (1983).
[7] Th. Friedrich, I. Kath, A. Moroianu and U. Semmelmann, On nearly parallel G 2 -structures, J. Geom. Phys. 23 (1997), 259–286.
[8] A. Gray, Weak holonomy groups, Math. Z. 123 (1971), 290–300.
[9] G. B. Gurevich, Classification of trivectors of rank eight (in Russian), Dokl. Akad. Nauk SSSR 2 (1935), 353-355.
[10] G. B. Gurevich, Algebra of trivectors II. (in Russian), Trudy Sem. Vektor. Tenzor. Anal. 6 (1948), 28-124.
[11] N. J. Hitchin, The geometry of three-forms in six dimensions, J.Differential Geometry 56 (2001), see also math.DG/0010054
[12] B. Julia, Système linéaire associé aux équations d’Einstein, C. R. Acad. Sci. Paris Sér. II 295 (1982), 113–116.
[13] W. Reichel, Über die Trilinearen Alternierenden Formen in 6 und 7 Veränderlichen, Dissertation, Greifswald, (1907). · JFM 38.0674.03
[14] S. Salamon, Riemannian geometry and holonomy groups, Pitman Research Notes in Mathematics 201, Longman, Harlow 1989.
[15] J. A. Schouten, Klassifizierung der alternierenden Grössen dritten Grades in 7 Dimensionen, Rend. Circ. Mat. Palermo, 55 (1931), 137– 156.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.