Kharlamov, Viatcheslav Real Fano varieties. (Variétés de Fano réelles.) (French) Zbl 1004.53059 Séminaire Bourbaki. Volume 1999/2000. Exposés 865-879. Paris: Société Mathématique de France, Astérisque 276, 189-206, Exp. No. 872 (2002). A Fano varieties is a compact smooth Kähler manifold whose Kähler class coincides with the Chern class. The present paper gives a sketch of Viterbo’s theorem, related to Kollar’s conjecture. Floer trajectories, holomorphic curves and the Conley-Zehnder-Duisfermaat index are used. At the end the Eliashberg approach is given.For the entire collection see [Zbl 0981.00011]. Reviewer: Cornelia-Livia Bejan (Iaşi) Cited in 2 Documents MSC: 53D12 Lagrangian submanifolds; Maslov index 14P25 Topology of real algebraic varieties Keywords:Fano variety; Viterbo theorem PDF BibTeX XML Cite \textit{V. Kharlamov}, Astérisque 276, 189--206, Exp. No. 872 (2002; Zbl 1004.53059) Full Text: Numdam EuDML