Davis, John M.; Henderson, Johnny; Prasad, K. Rajendra; Yin, William Solvability of a nonlinear second order conjugate eigenvalue problem on a time scale. (English) Zbl 1005.34010 Abstr. Appl. Anal. 5, No. 2, 91-99 (2000). Summary: The authors consider the nonlinear second-order conjugate eigenvalue problem on a time scale: \(y^{\Delta\Delta}(t) + \lambda a(t) f(y(\sigma(t))) = 0, t \in [0,1], y(0) = 0 = y(\sigma(1))\). Values of the parameter \(\lambda\) (eigenvalues) are determined for which this problem has a positive solution. The methods used here extend recent results by allowing for a broader class of functions for \(a(t)\). Cited in 6 Documents MSC: 34B15 Nonlinear boundary value problems for ordinary differential equations 34L30 Nonlinear ordinary differential operators Keywords:nonlinear second-order conjugate eigenvalue problem; positive solution × Cite Format Result Cite Review PDF Full Text: DOI EuDML