Alvarez, Felipe; Mandallena, Jean-Philippe Homogenization of multiparameter integrals. (English) Zbl 1005.49008 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 50, No. 6, 839-870 (2002). The paper is concerned with some multiparameter integral functionals of the form \[ \int_\Omega W_\lambda\bigg({x\over\varepsilon},\nabla u(x)\bigg) dx, \] where \(\Omega\) is a bounded domain in \({\mathbb R}^N\), \(u\colon\Omega\to{\mathbb R}^m\), \(\varepsilon>0\), and \(W_\lambda\colon {\mathbb R}^N\times{\mathbb R}^{mN}\to[0,+\infty[\) is \(]0,1[^N\) periodic with respect to the first variable. The novelty of the paper is that the integrand is permitted to depend on a vector of parameters \(\lambda=(\lambda_1,\dots,\lambda_k)\in{\mathbb R}^k\), with \(k\geq 1\). The asymptotic behaviour of the above functionals is studied as \(\varepsilon\to 0\) and \(\lambda\to 0\), possibly following particular paths linking them and forcing them to vanish simultaneously.Homogenization formulas are deduced, as well as applications to convex and non-convex integrands. Reviewer: Riccardo De Arcangelis (Napoli) Cited in 1 ReviewCited in 3 Documents MSC: 49J45 Methods involving semicontinuity and convergence; relaxation 49N20 Periodic optimal control problems 35B27 Homogenization in context of PDEs; PDEs in media with periodic structure Keywords:constrained variational problems; \(\Gamma\)-convergence; interface problems; homogenization; multiparameter integral functionals × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Abddaimi, Y.; Licht, C.; Michaille, G., Stochastic homogenization for an integral functional of a quasiconvex function with linear growth, Asymptotic Anal., 15, 183-202 (1997) · Zbl 0912.49013 [2] Acerbi, E.; Chiadò Piat, V.; Dal Maso, G.; Percivale, D., An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., 18, 481-496 (1992) · Zbl 0779.35011 [3] Attouch, H., Variational Convergence for Functions and Operators (1984), Pitman Advanced Publishing Program: Pitman Advanced Publishing Program Pitman, London · Zbl 0561.49012 [4] Avellaneda, M., Iterated homogenization, differential effective medium theory and applications, Commun. Pure Appl. Math., XL, 527-556 (1987) · Zbl 0629.73010 [5] Braides, A., Omogeneizzazione di integrali non coercivi, Ricerche Mat., 32, 347-368 (1983) · Zbl 0547.49007 [6] Braides, A., Homogenization of some almost periodic functionals, Rend. Accad. Naz. Sci., XL 103, 313-322 (1985) · Zbl 0582.49014 [7] Braides, A.; Chiadò Piat, V., Remarks on the homogenization of connected media, Nonlinear Anal., 22, 391-407 (1994) · Zbl 0802.35006 [8] Braides, A.; Defranceschi, A., Homogenization of Multiple Integrals. Homogenization of Multiple Integrals, Oxford Lecture Series in Mathematics and its Applications, Vol. 12 (1998), Oxford University Press: Oxford University Press New York · Zbl 0911.49010 [9] Dal Maso, G., An Introduction to \(Γ\)-convergence, Vol. 8 (1993), Birkhäuser: Birkhäuser Boston · Zbl 0816.49001 [10] G. Dal Maso, L. Modica, A general theory of variational functionals, topics in functional analysis 1980-81, Quaderno della Scuola Normale Superiore di Pisa, Italy (1981) 149-221.; G. Dal Maso, L. Modica, A general theory of variational functionals, topics in functional analysis 1980-81, Quaderno della Scuola Normale Superiore di Pisa, Italy (1981) 149-221. · Zbl 0493.49005 [11] Dal Maso, G.; Modica, L., Non linear stochastic homogenization and ergodic theory, J. Reine Angew. Math., 363, 27-43 (1986) [12] De Giorgi, E., Sulla convergenza di alcune successioni di integrali del tipo dell’area, Rend. Mat. Appl., (6)8, 277-294 (1975) · Zbl 0316.35036 [13] De Giorgi, E.; Franzoni, T., Su un tipo di convergenza variationale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat., (8)58, 842-850 (1975) · Zbl 0339.49005 [14] Fusco, N., On the convergence of integral functionals depending on vector-valued functions, Rc. Mat., 32, 321-339 (1983) · Zbl 0563.49007 [15] Ya. Khruslov, E., The asymptotic behavior of solutions of the second boundary value problem under fragmentation of the boundary of the domain, Math. USSR-Sb., 35, 266-282 (1979) · Zbl 0421.35019 [16] Krengel, U., Ergodic theorems, Studies in Mathematics, Vol. 6 (1985), De Gruyter: De Gruyter Berlin · Zbl 0471.28011 [17] Licht, C.; Michaille, G., A modelling of elastic adhesive bonding joints, Adv. Math. Sci. Appl., 7, 711-740 (1997) · Zbl 0892.73007 [18] C. Licht, G. Michaille, Global-local subadditive ergodic theorems and application to homogenization in elasticity, Université Montpellier II, Preprint 04 (1997).; C. Licht, G. Michaille, Global-local subadditive ergodic theorems and application to homogenization in elasticity, Université Montpellier II, Preprint 04 (1997). · Zbl 1070.28006 [19] J.-P. Mandallena, Homogénéisation par épiconvergence d’un matériau dur avec inclusions molles de faible rigidité, Mémoire de DEA, Université Montpellier II, 1996.; J.-P. Mandallena, Homogénéisation par épiconvergence d’un matériau dur avec inclusions molles de faible rigidité, Mémoire de DEA, Université Montpellier II, 1996. [20] Marcellini, P., Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl., 117, 139-152 (1978) · Zbl 0395.49007 [21] Messaoudi, K.; Michaille, G., Stochastic homogenization of nonconvex integral functionals, Math. Modelling Numer. Anal., 28, 329-356 (1995) · Zbl 0818.60029 [22] S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rat. Mech. Anal. (1987) 189-212.; S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rat. Mech. Anal. (1987) 189-212. · Zbl 0629.73009 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.