Gozzi, Fausto; Sritharan, S. S.; Świech, Andrzej Viscosity solutions of dynamic-programming equations for the optimal control of the two-dimensional Navier-Stokes equations. (English) Zbl 1005.49028 Arch. Ration. Mech. Anal. 163, No. 4, 295-327 (2002). The authors consider the abstract model of the Navier-Stokes equations \[ \begin{aligned} X'(s) &= - {\mathbf A} X(s) - {\mathbf B}(X(s), X(s)) + {\mathbf f}(s, {\mathbf a}(s)) \quad ((t, T] \times {\mathbf H}) \\ X(t) &= {\mathbf x} \in {\mathbf H}\end{aligned} \] where \({\mathbf H}\) is the closure of the set of all solenoidal vectors in \(L^2(\Omega;\mathbb{R}^2)\) \((\Omega\) a bounded 2-dimensional domain) and the control \({\mathbf a}(\cdot)\) ranges over a strategy set \(\mathcal U.\) Minimization over \({\mathbf a}(\cdot)\) of a cost functional \[ J(t, {\mathbf x}; {\mathbf a}) = \int_t^T \ell(s, X(s), {\mathbf a}(s)) ds + g(X(T)) \] leads to the Hamilton-Jacobi equation for the value function \[ {\mathcal V}(t, {\mathbf x}) = \inf_{{\mathbf a(\cdot}) \in {\mathcal U}} J(t, {\mathbf x}; {\mathbf a}). \] The main contribution of this paper is the proof of global unique solvability of the Hamilton-Jacobi equation. Reviewer: Hector O.Fattorini (Los Angeles) Cited in 10 Documents MSC: 49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games 76D05 Navier-Stokes equations for incompressible viscous fluids 76D55 Flow control and optimization for incompressible viscous fluids 49L20 Dynamic programming in optimal control and differential games 49K20 Optimality conditions for problems involving partial differential equations Keywords:dynamic programming; Hamilton-Jacobi equations; viscosity solutions; optimal control of two dimensional flow × Cite Format Result Cite Review PDF Full Text: DOI