zbMATH — the first resource for mathematics

The Lie bialgebroid of a Poisson-Nijenhuis manifold. (English) Zbl 1005.53060
The authors prove that a Poisson structure and a Nijenhuis structure constitute a Poisson-Nijenhuis structure if and only if the cotangent and the tangent bundles are a Lie bialgebroid when equipped, respectively, with the bracket of 1-forms defined by the Poisson tensor \(P\) and with the deformed bracket of vector fields defined by the Nijenhuis tensor \(N\).
The authors also give a review of the notions of Lie algebroid and Lie bialgebroid.

53D17 Poisson manifolds; Poisson groupoids and algebroids
17B63 Poisson algebras
58H05 Pseudogroups and differentiable groupoids
Full Text: DOI
[1] Beltrán, J. V. and Monterde, J.: Poisson-Nijenhuis structures and the Vinogradov bracket,Ann. Global Anal. Geom. 12 (1994), 65–78. · Zbl 0828.58015
[2] Carathéodory, C.:Variationsrechnung und Partielle Differentialgleichungen Erster Ordnung, Teubner, Berlin 1935; English translation:Calculus of Variations and Partial Differential Equations of the First Order, vol. 1, Holden-Day, 1965, chapter 9.
[3] Coste, A., Dazord, P. and Weinstein, A.: Groupoïdes symplectiques, Publ. Univ. Lyon-I, 2-A (1987). · Zbl 0668.58017
[4] Dorfman, I. Ya.:Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, New York, 1993. · Zbl 0717.58026
[5] Drinfeld, V. G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations,Soviet Math. Dokl. 27(1) (1983), 68–71. · Zbl 0526.58017
[6] Fuchssteiner, B.: The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems,Progr. Theoret. Phys. 68 (1982), 1082–1104. · Zbl 1098.37540
[7] Kosmann-Schwarzbach, Y.: Exact Gerstenhaber algebras and Lie bialgebroids,Acta Appl. Math. 41 (1995), 153–165. · Zbl 0837.17014
[8] Kosmann-Schwarzbach, Y. and Magri, F.: Poisson-Nijenhuis structures,Ann. Inst. Henri Poincaré, Phys. Théor. 53 (1990), 35–81. · Zbl 0707.58048
[9] Koszul, J.-L.: Crochet de Schouten-Nijenhuis et cohomologie, in:Elie Cartan et les mathématiques d’aujourd’hui, Astérisque, hors série, Soc. Math. France, 1985.
[10] Lie, S.: Zur Theorie der Transformationsgruppen,Christ. Forh. Aar., No. 13 (1888), reprinted inGes. Abh., V, XXIII, 553–557.
[11] Lie, S.:Theorie der Transformationsgruppen, Zweitner Abschnitt, Teubner, Leipzig 1890. · JFM 22.0372.01
[12] Liu, Zhang-Ju, Weinstein, A. and Xu, Ping: Manin triples for Lie bialgebroids, Preprint, 1995.
[13] Mackenzie, K.:Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc. Lecture Notes Series 124, Cambridge Univ. Press, 1987. · Zbl 0683.53029
[14] Mackenzie, K. and Xu, Ping: Lie bialgebroids and Poisson groupoids,Duke Math. J. 73 (1994). 415–452. · Zbl 0844.22005
[15] Magri, F. and Morosi, C.: A Geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno S19, University of Milan, 1984.
[16] Pradines, J.: Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux,C.R. Acad. Sci. Paris A 264 (1967), 245–248.
[17] Vaisman, I.: Poisson-Nijenhuis manifolds revisited,Rend. Sem. Mat. Univ. Politec. Torino 52(4) (1994), 377–394. · Zbl 0852.58042
[18] Weinstein, A.: Sophus Lie and symplectic geometry,Expo. Math. 1, 95–96 (1983). · Zbl 0501.53026
[19] Weinstein, A.: The local structure of Poison manifolds,J. Differential Geom. 18 (1983), 523–557. · Zbl 0524.58011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.