Lawler, Gregory F.; Schramm, Oded; Werner, Wendelin Values of Brownian intersection exponents. I: Half-plane exponents. (English) Zbl 1005.60097 Acta Math. 187, No. 2, 237-273 (2001). This outstanding paper is the first one in a series, devoted to some problems concerning planar Brownian motion, arising from two-dimensional models in statistical physics. Namely, the values of Brownian intersection exponents are computed: Let \({\mathbf B}_{i}\), \(i = 1, \ldots , p\), be independent planar Brownian motions (or simple random walks in \({\mathbb Z}^{2}\)), starting from distinct points in the upper half plane \({\mathbf H}\). Then, for \(n \rightarrow +\infty \): \[ {\mathbf P} \left [ {\mathbf B}_{i}[0, n] \cap {\mathbf B}_{j}[0, n] = \emptyset \text{ and } {\mathbf B}_{i}[0, n] \subseteq {\mathbf H}, \forall i \not = j \right ] = n^{-\zeta _{p} + o(1)} \] where \(\zeta _{p} = {{1}\over {6}} p (2 p + 1)\) is the Brownian intersection exponent. The existence of the intersection exponents is readily established. K. Burdzy and G. F. Lawler [Probab. Theory Relat. Fields 84, No. 3, 393–410 (1990; Zbl 0665.60078)] showed that these intersection exponents are the same for the planar Brownian motion and for the simple random walk in \({\mathbb Z}^{2}\). At the heart of the proofs is \(\text{SLE}_{6}\), the stochastic Loewner evolution process with parameter \(6\), which is conjectured to be the scaling limit of two-dimensional critical percolation cluster boundaries. There is a profound relation between this process, planar Brownian motion and conformal invariance. Special instances of this result have been conjectured in the physics literature for a long time; see for example [B. Duplantier and K.-H. Kwon, Phys. Rev. Lett. 61, 2514–2517 (1988)]. The proof of the main theorem uses a combination of ideas from the following papers: O. Schramm [Isr. J. Math. 118, 221–288 (2000; Zbl 0968.60093)]; G. F. Lawler and W. Werner [Ann. Probab. 27, No. 4, 1601–1642 (1999; Zbl 0965.60071) and J. Eur. Math. Soc. (JEMS) 2, No. 4, 291–328 (2000; Zbl 1098.60081)]. Intersection exponents in the half plane play an important role in understanding the corresponding exponents in the whole plane [computed in the second part of this paper [Acta Math. 187, No. 2, 275–308 (2001; Zbl 0993.60083)]. [For part III, see Ann. Inst. Henri Poincaré, Probab. Stat. 38, No. 1, 109–123 (2002; Zbl 1006.60075)]. Reviewer: Liliana Popa (Iaşi) Cited in 5 ReviewsCited in 125 Documents MSC: 60J65 Brownian motion 30C35 General theory of conformal mappings 82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics 60K35 Interacting random processes; statistical mechanics type models; percolation theory 60G35 Signal detection and filtering (aspects of stochastic processes) 60G17 Sample path properties 81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics Keywords:planar Brownian motion; intersection exponent; stochastic Loewner evolution equation; \(\text{SLE}_6\); conformal invariance Citations:Zbl 0685.60080; Zbl 0665.60078; Zbl 0968.60093; Zbl 0965.60071; Zbl 0993.60083; Zbl 1006.60075; Zbl 1098.60081 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Ahlfors, L. V.,Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill, New York, 1973. · Zbl 0272.30012 [2] Aizenman, M., The geometry of critical percolation and conformal invariance, inSTATPHYS 19 (Xiamen, 1995), pp. 104–120. World Sci. Publishing, River Edge, NJ, 1996. [3] Aizenman, M., Duplantier, B. &Aharony, A., Path crossing exponents and the external perimeter in 2D percolation.Phys. Rev. Lett., 83 (1999), 1359–1362. · doi:10.1103/PhysRevLett.83.1359 [4] Belavin, A. A., Polyakov, A. M. &Zamolodchikov, A. B., Infinite conformal symmetry in two-dimensional quantum field theory.Nuclear Phys. B, 241 (1984), 333–380. · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X [5] Burdzy, K. &Lawler, G. F., Non-intersection exponents for Brownian paths. Part I: Existence and an invariance principle.Probab. Theory Related Fields, 84 (1990), 393–410. · Zbl 0685.60080 · doi:10.1007/BF01197892 [6] Cardy, J. L., Conformal invariance and surface critical behavior.Nuclear Phys. B, 240 (1984), 514–532. · doi:10.1016/0550-3213(84)90241-4 [7] –, Critical percolation in finite geometries.J. Phys. A, 25 (1992), L201-L206. · Zbl 0965.82501 · doi:10.1088/0305-4470/25/4/009 [8] –, The number of incipient spanning clusters in two-dimensional percolation.J. Phys. A, 31 (1998), L105. · Zbl 0973.82021 · doi:10.1088/0305-4470/31/5/003 [9] Cranston, M. &Mountford, T., An extension of a result of Burdzy and Lawler.Probab. Theory Related Fields, 89 (1991), 487–502. · Zbl 0725.60072 · doi:10.1007/BF01199790 [10] Duplantier, B., Loop-erased self-avoiding walks in two dimensions: Exact critical exponents and winding numbers.Phys. A, 191 (1992), 516–522. · doi:10.1016/0378-4371(92)90575-B [11] –, Random walks and quantum gravity in two dimensions.Phys. Rev. Lett., 81 (1998), 5489–5492. · Zbl 0949.83056 · doi:10.1103/PhysRevLett.81.5489 [12] Duplantier, B. &Kwon, K.-H., Conformal invariance and intersection of random walks.Phys. Rev. Lett., 61 (1988), 2514–2517. · doi:10.1103/PhysRevLett.61.2514 [13] Duplantier, B. &Saleur, H., Exact determination of the percolation hull exponent in two dimensions.Phys. Rev. Lett., 58 (1987), 2325–2328. · doi:10.1103/PhysRevLett.58.2733 [14] Grimmett, G.,Percolation. Springer-Verlag, New York, 1989. [15] Ikeda, N. &Watanabe, S.,Stochastic Differential Equations and Diffusion Processes, 2nd edition. North-Holland Math. Library, 24. North-Holland, Amsterdam, 1989. · Zbl 0684.60040 [16] Kenyon, R., Conformal invariance of domino tiling.Ann. Probab., 28 (2000), 759–795. · Zbl 1043.52014 · doi:10.1214/aop/1019160260 [17] –, The asymptotic determinant of the discrete Laplacian.Acta Math., 185 (2000), 239–286. · Zbl 0982.05013 · doi:10.1007/BF02392811 [18] –, Long-range properties of spanning trees. Probabilistic techniques in equilibrium and nonequilibrium statistical physics.J. Math. Phys., 41 (2000), 1338–1363. · Zbl 0977.82011 · doi:10.1063/1.533190 [19] Langlands, R., Pouliot, P. &Saint-Aubin, Y., Conformal invariance in two-dimensional percolation.Bull. Amer. Math. Soc. (N.S.), 30 (1994), 1–61. · Zbl 0794.60109 · doi:10.1090/S0273-0979-1994-00456-2 [20] Lawler, G. F.,Intersections of Random Walks. Birkhäuser, Boston, Boston, MA, 1991. · Zbl 1228.60004 [21] –, Hausdorff dimension of cut points for Brownian motion.Electron. J. Probab., 1:2 (1996), 1–20 (electronic). · Zbl 0891.60078 [22] –, The dimension of the frontier of planar Brownian motion.Electron. Comm. Probab., 1:5 (1996), 29–47 (electronic). · Zbl 0857.60083 [23] Lawler, G. F., The frontier of a Brownian path is multifractal. Preprint, 1997. [24] Lawler, G. F. &Puckette, E. E., The intersection exponent for simple random walk.Combin. Probab. Comput., 9 (2000), 441–464. · Zbl 0974.60088 · doi:10.1017/S0963548300004442 [25] Lawler, G. F., Schramm, O. &Werner, W., Values of Brownian intersection exponents, II: Plane exponents.Acta Math., 187 (2001), 275–308. http://arxiv.org/abs/math.PR/0003156 · Zbl 0993.60083 · doi:10.1007/BF02392619 [26] Lawler, G. F., Schramm, O. & Werner, W., Values of Brownian intersection exponents, III: Two-sided exponents. To appear inAnn. Inst. H. Poincaré Probab. Statist. http://arxiv.org/abs/math.PR/0005294. · Zbl 1006.60075 [27] Lawler, G. F., Schramm, O. & Werner, W., Analyticity of intersection exponents for planar Brownian motion. To appear inActa Math., 188 (2002). http://arxiv.org/abs/math.PR/0005295. · Zbl 1024.60033 [28] Lawler, G. F. &Werner, W., Intersection exponents for planar Brownian motion.Ann. Probab., 27 (1999), 1601–1642. · Zbl 0965.60071 · doi:10.1214/aop/1022677543 [29] —-, Universality for conformally invariant intersection exponents.J. Eur. Math. Soc. (JEMS), 2 (2000), 291–328. · Zbl 1098.60081 · doi:10.1007/s100970000024 [30] Lebedev, N. N.,Special Functions and Their Applications, Dover, New York, 1972. · Zbl 0271.33001 [31] Lehto, O. &Virtanen, K. I.,Quasiconformal Mappings in the Plane, 2nd edition. Grundlehren Math. Wiss., 126. Springer-Verlag, New York-Heidelberg, 1973. · Zbl 0267.30016 [32] Löwner, K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I.Math. Ann., 89 (1923), 103–121. · JFM 49.0714.01 · doi:10.1007/BF01448091 [33] Madras, N. &Slade, G.,The Self-Avoiding Walk. Birkhäuser, Boston, Boston, MA, 1993. · Zbl 0780.60103 [34] Majumdar, S. N., Exact fractal dimension of the loop-erased random walk in two dimensions.Phys. Rev. Lett., 68 (1992), 2329–2331. · doi:10.1103/PhysRevLett.68.2329 [35] Mandelbrot, B. B.,The Fractal Geometry of Nature. Freeman, San Francisco, CA, 1982. · Zbl 0504.28001 [36] Marshall, D. E. & Rohde, S., The Loewner differential equation and slit mappings. Preprint. · Zbl 1078.30005 [37] Pommerenke, Ch., On the Loewner differential equation.Michigan Math. J., 13 (1966), 435–443. · Zbl 0163.31801 · doi:10.1307/mmj/1028999601 [38] –,Boundary Behaviour of Conformal Maps. Grundlehren Math. Wiss., 299. Springer-Verlag, Berlin, 1992. · Zbl 0762.30001 [39] Revuz, D. &Yor, M.,Continuous Martingales and Brownian Motion. Grundlehren Math. Wiss., 293. Springer-Verlag, Berlin, 1991. · Zbl 0731.60002 [40] Rohde, S. & Schramm, O., Basic properties of SLE. Preprint. · Zbl 1081.60069 [41] Rudin, W.,Real and Complex Analysis, 3rd edition, McGraw-Hill, New York, 1987. · Zbl 0925.00005 [42] Schramm, O., Scaling limits of loop-erased random walks and uniform spanning trees.Israel J. Math., 118 (2000), 221–288. · Zbl 0968.60093 · doi:10.1007/BF02803524 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.