zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Travelling fronts for the KPP equation with spatio-temporal delay. (English) Zbl 1005.92024
Summary: We study an integro-differential equation based on the KPP equation (Kolmogorov-Petrovskij-Piskunov) with a convolution term which introduces a time-delay in the nonlinearity. Special attention is paid to the question of the existence of travelling wavefront solutions connecting the two uniform steady states and their qualitative form. Motivated by the analogue between steady travelling fronts and heteroclinic orbits of an associated ordinary differential equation, we prove, using a geometric singular perturbation analysis, that steady travelling wavefront solutions persist when the delay is suitably small, for a class of convolution kernels. These travelling fronts are qualitatively similar to the well known KPP wavefront. The effect of finite and large delays is studied numerically and we find that this introduces qualitative changes to the fronts but that the fronts remain robust. A numerical integration of the initial-value problem confirms the qualitative shape of these fronts and suggests that -- even for large delays -- they may be temporally stable. Finally we show that in the discrete delay case the non-zero uniform state can be driven unstable. In this case a travelling wavefront can leave in its wake a periodic travelling wave moving with a different speed.

92D25Population dynamics (general)
35B25Singular perturbations (PDE)
35K57Reaction-diffusion equations
35R10Partial functional-differential equations
45K05Integro-partial differential equations
Full Text: DOI