zbMATH — the first resource for mathematics

Estimates for Rankin-Selberg \(L\)-functions and quantum unique ergodicity. (English) Zbl 1006.11022
This is the second of a series of papers which are concerned with proving new estimates for \(L\)-functions on the critical line. The usual approach to this problem starts from the trivial bounds in the domains \(\operatorname{Re} s>1\) and \(\operatorname{Re} s<0\) and uses the Phragmén-Lindelöf interpolation method. This method gives the so-called convexity bound for \(L(\frac{1}{2}+ it,f)\), which however turns out to be too weak for certain applications. Sharper estimates are known for \(L\)-functions of degree one (Dirichlet \(L\)-functions) and degree two. For general \(L\)-functions of higher degree, the deduction of bounds better than the convexity bound is an important open problem. In the present work the author establishes such a bound (with respect to the weight \(k\) of \(f\)) for a class of special degree four \(L\)-functions, that is for Rankin-Selberg \(L\)-functions of two degree two \(L\)-functions (one of which – \(g\) – is kept fixed) for holomorphic cusp forms \(f\) and \(g\) on \(\Gamma_0(N)\). The result is applied to the problem of so-called quantum unique ergodicity: Let \(f\) be a Hecke cusp form on \(\Gamma_0(N)\) such that
(i) \(f\) is a holomorphic cusp form of even integral weight \(k\), or
(ii) \(f\) is a Maaß cusp form with eigenvalue \(\lambda\),
and consider the measure (normalized to be a probability measure) \[ d\mu_f:= y^k|f(z)|^2 \frac{dx dy}{y^2} \] on \(\Gamma_0(N) \setminus \mathbb{H}\). Then the equidistribution conjecture of Rudnik and Sarnak claims: As \(k\to \infty\) in the holomorphic case or \(\lambda\to \infty\) in the case of Maaß forms, we have \[ d\mu_f\to \frac{1} {\text{vol} (\Gamma_0(N) \setminus \mathbb{H})} \frac{dx dy} {y^2} \] (in the sense of weak convergence). As an application of his subconvexity, bound the author shows: The equidistribution conjecture is true for holomorphic CM forms.

11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
81Q50 Quantum chaos
11M41 Other Dirichlet series and zeta functions
11F11 Holomorphic modular forms of integral weight
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F72 Spectral theory; trace formulas (e.g., that of Selberg)
Full Text: DOI
[1] Burgess, D., On character sums and L-series II, Proc. London math. soc., 313, 24-36, (1963) · Zbl 0123.04404
[2] J. Gogdell, I. Piatetsky-Shaprio, and, P. Sarnak, Estimates for Hilbert modular L-functions and applications, in preparation.
[3] Deligne, P., Formes modulaires et représentations ℓ-adiques, Lecture notes in mathematics, 179, (1971), Springer-Verlag Berlin/New York, p. 139-172
[4] Duke, W.; Friedlander, J.; Iwaniec, H., Bounds for automorphic L-functions, Invent. math., 112, 1-18, (1993) · Zbl 0765.11038
[5] Duke, W.; Friedlander, J.; Iwaniec, H., A quadratic divisor problem, Invent. math., 115, 209-217, (1994) · Zbl 0791.11049
[6] Duke, W.; Friedlander, J.; Iwaniec, H., Bounds for automorphic L-functions II, Invent. math., 115, (1994) · Zbl 0812.11032
[7] Desholliers, J.; Iwaniec, H., An additive divisor problem, J. London math. soc., 26, 1-14, (1982) · Zbl 0462.10030
[8] Good, A., The square Mean of a Dirichlet series associated with cusp forms, Mathematika, 29, 278-295, (1982) · Zbl 0497.10016
[9] Gradshteyn, I.S.; Ryzhik, I.M., Table of integrals, Series, (1994), Products A.P · Zbl 0918.65002
[10] Hoffstein, J.; Lockhardt, P., Coefficients of Maass forms and the Siegel zero, Ann. of math. (2), 140, 161-181, (1994)
[11] H. Iwaniec, W. Luo, and, P. Sarnak, Low lying zeros of families of L-functions, Publ. THES, in press. · Zbl 1012.11041
[12] Iwaniec, H., Small eigenvalue of Laplacian for γ0(N), Acta arith., 56, 65-82, (1990) · Zbl 0702.11034
[13] Iwaniec, H., Topics in classical automorphic forms, Grad. studies in math., 17, (1997), Amer. Math. Soc Providence
[14] H. Iwaniec, and, P. Sarnak, Perspectives on the analytic theory of L-functions, GAFA, in press. · Zbl 0996.11036
[15] E. Kowalski, P. Michel, and, J. Vanderkam, Rankin Selberg L-functions in the level aspect, preprint. · Zbl 1035.11018
[16] H. Kim, and, P. Sarnak, Appendix: Refined estimates towards the Ramanujan and Selberg conjectures, preprint, 2000.
[17] Kuznetsov, N.V., Petersson’s conjecture for cusp forms of weight zero and Linnik’s conjecture, sums of Kloosterman sums, Math. USSR sb., 29, 299-342, (1981) · Zbl 0461.10017
[18] Luo, W.; Rudnick, Z.; Sarnak, P., On the generalized Ramanujan conjecture for GL(n), Aut. forms and representations and arithmetic, Proc. sym. pure math., 66, (1999), Amer. Math. Soc Providence, p. 301-310 · Zbl 0965.11023
[19] Motohashi, Y., The binary additive divisor problem, Ann. sci. ecole norm. sup., 27, 529-572, (1994) · Zbl 0819.11038
[20] Muerman, T., On the order of Maass L-functions on the critical line, Number theory, Budapest colloq. math. soc. bolai, vol. 51, I, (1990)
[21] Petersson, H., Zur analytischen theorie der grenzkreisgruppen, Math. Z., 44, 127-155, (1938) · JFM 64.1076.02
[22] Petridis, Y., On squares of eigenfunctions for the hyperbolic plane and a new bounds for certain L-series, Internat. math. res. notices, 3, 111-127, (1995) · Zbl 0833.11021
[23] Y. Petridis, and, P. Sarnak, Quantum unique ergodicity for SL2(O)∣\(H\)3 and estimates for L-functions, J. Egyptian Math. Soc, in press. · Zbl 0995.11036
[24] Z. Rudnick, letter to P. Sarnak, 2000.
[25] Rudnick, Z.; Sarnak, P., The behavior of eigenstates of arithmetic hyperbolic manifolds, Comm. math. phys., 161, 195-213, (1994) · Zbl 0836.58043
[26] Sarnak, P., Integrals of products of eigenfunctions, Internat. math. res. notices, 6, 251-260, (1994) · Zbl 0833.11020
[27] P. Sarnak, Arithmetic quantum chaos, in The Schur Lectures, Tel Aviv 1992, Israel Math. Conf., Bar Ilan, 1995, Vol. 8, pp. 183-236. · Zbl 0831.58045
[28] P. Sarnak, Notes on equidistribution of mass for CM forms, 2000.
[29] Selberg, A., On the estimation of Fourier coefficients of modular forms, Proc. sympos. pure math., VII, 1-15, (1965)
[30] Shahidi, F., On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. of math. (2), 127, 547-584, (1988) · Zbl 0654.10029
[31] Shiffman, B.; Zelditch, S., Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. math. phys., 200, 661-683, (1999) · Zbl 0919.32020
[32] Watson, T., Central value of Rankin triple L-function for unramified Maass cusp forms, (2001), Princeton
[33] Weyl, H., Zur abschätzung von ξ(1+it), Math. Z., 10, 88-101, (1921) · JFM 48.0346.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.