×

Imaginary cyclic fields of degree \(p-1\) whose relative class numbers are divisible by \(p\). (English) Zbl 1006.11063

Let \(p\) be an odd prime, \(\zeta\) be a primitive \(p\)th root of unity and \(\omega= \zeta+ \zeta^{-1}\). Let \(k= \mathbb{Q} (\sqrt{d})\) be a real quadratic field that is not contained in \(\mathbb{Q} (\zeta)\). Then \(\mathbb{Q} (\zeta, \sqrt{d})\) is a bicyclic biquadratic extension of \(\mathbb{Q}(\omega)\) and so contains a unique subfield \(M\) different from \(\mathbb{Q}(\zeta)\) and \(k(\omega)\) that is a quadratic extension of \(\mathbb{Q}(\omega)\). The main result of the article is that if there exists a unit \(\varepsilon\) of \(k\) with \(\varepsilon^p \not\in k^p\) which satisfies \(\text{Tr} (\varepsilon)\equiv 0\pmod {p^2}\) then the relative class number of \(M\) is divisible by \(p\). The cases \(p=3\) and \(p=5\) are included in the work of C. S. Herz [Lect. Notes Math. 21, VII-1–VII-21 (1966; Zbl 0147.03902)] and the reviewer [Math. Comput. 32, 1261-1270 (1978; Zbl 0401.12008)].
The author uses a result of M. Sase [Proc. Japan Acad., Ser. A 74, 120-123 (1998; Zbl 0926.11081)] to explicitly construct an Abelian unramified extension \(E\) of \(M\) when the hypothesis of the theorem is satisfied. It is also shown that the Galois group of \(E/Q\) is the Frobenius group \(F_p\) of order \(p(p-1)\). When \(p\equiv 3\pmod 4\), \(p\) divides the class number of \(k\) and the hypothesis of the theorem is satisfied, the previously mentioned fact enables the author to show that the \(p\)-class group has rank at least 2. For \(p=7\), the author gives a table of all \(d\leq 5000\) for which the class number of \(k\) is divisible by 7 and the hypothesis of the theorem is satisfied. There are 28 such fields and for each one the structure of the class group of \(M\) is given.

MSC:

11R29 Class numbers, class groups, discriminants
11R20 Other abelian and metabelian extensions
12F10 Separable extensions, Galois theory
Full Text: DOI

References:

[1] Herz, C. S.: Construction of class fields. Seminar on Complex Multiplication: Seminar held at the Institute for Advanced Study, Princeton, N.J., 1957-58. (eds. Borel, A., Chowla, S., Herz, C. S., Iwasawa, K., and Serre, J.-P.). Lecture Notes in Math., no. 21, Springer, Berlin-Heidelberg-New York, pp. VII-1-VII-21 (1966). · Zbl 0147.03902
[2] Imaoka, M., and Kishi, Y.: Spiegelung Relations Between Dihedral Extensions and Frobenius Extensions. Tokyo Metropolitan Univ.Math. Preprint Series, no. 12, (2000). · Zbl 1068.11070 · doi:10.1007/978-1-4613-0249-0_10
[3] Katayama, S.: On fundamental units of real quadratic fields with norm \(+1\). Proc. Japan Acad., 68A , 18-20 (1992). · Zbl 0753.11037 · doi:10.3792/pjaa.68.18
[4] Nagel, Tr.: Über die Klassenzahl imaginär-quadratischer Zahlköper. Abh. Math. Sem. Univ. Hamburg, 1 , 140-150 (1922). · JFM 48.0170.03
[5] Nakano, S.: On the construction of certain number fields. Tokyo J. Math., 6 , 389-395 (1983). · Zbl 0529.12005 · doi:10.3836/tjm/1270213878
[6] Parry, C. J.: Real quadratic fields with class numbers divisible by five. Math. Comp., 32 , 1261-1270 (1978). · Zbl 0401.12008 · doi:10.1090/S0025-5718-1977-0498483-X
[7] Sase, M.: On a family of quadratic fields whose class numbers are divisible by five. Proc. Japan Acad., 74A , 120-123 (1998). · Zbl 0926.11081 · doi:10.3792/pjaa.74.120
[8] Satgé, M.: Corps résolubles et divisibilité de nombres de classes d’idéaux. Enseign. Math.(2), 25 , 165-188 (1979). · Zbl 0447.12005 · doi:10.5169/seals-50376
[9] Uehara, T.: On class numbers of cyclic quartic fields. Pacific J. Math., 122 , 251-255 (1986). · Zbl 0659.12010 · doi:10.2140/pjm.1986.122.251
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.