Gil-Medrano, Olga; Llinares-Fuster, Elisa Minimal unit vector fields. (English) Zbl 1006.53053 Tohoku Math. J., II. Ser. 54, No. 1, 71-84 (2002). Let \((M,g)\) be a Riemannian manifold such that the set \({\mathcal X}^1(M)\) of unit vector fields is not empty, and \(T^1M\) the unit tangent bundle. The volume of an element \(V\in{\mathcal X}^1(M)\) is defined as the volume of the submanifold \(V(M)\), which is the image of the immersion \(V:M\to T^1M\), when \(T^1 M\) is equipped with the restriction of the Sasaki metric \(g^S\). The unit vector fields of minimum volume on \(M\), if they exist, are to be found among the critical points of the volume functional restricted to \({\mathcal X}^1(M)\).In order to characterize the critical points, the authors compute the first variation of the functional. Result: An element \(V\in {\mathcal X}^1(M)\) is a critical point of the volume functional restricted to \({\mathcal X}^1(M)\) if and only if \(V:M\to (T^1M,g^S)\) is a minimal immersion. They also study minimal unit vector fields in constant curvature spaces. Let \(f:{\mathcal X}^1 (M)\to C^\infty (M)\) be defined as \(f(V)= \sqrt{\det L_V}\), where the volume functional \(F:{\mathcal X}^1(M) \to\mathbb{R}\) is given by \(F(V)=\int_M f(V)dv\), \(dv\) is the density on \(M\) defined by \(g\), \(L_V=\text{Id} +(\nabla V)^t_0 \nabla V\), and \(\nabla V\) is a \((1,1)\)-tensor field.Theorem: Let \(M\) be an \(n\)-dimensional manifold of constant sectional curvature \(K\). Then every unit Killing vector field \(V\) on \(M\) is minimal. Moreover, \(f(V)=(K+1)^{(n-1)/2}\) and \(F(V)= (K+1)^{(n-1)/2} \text{Vol}(M)\).Finally, the authors prove the following result: A necessary and sufficient condition for a unit Killing vector field \(V\) to be minimal is the vanishing of a certain 1-form given in terms of the covariant derivative of \(V\) and the curvature tensor. From this results are obtained some interesting corollaries. Reviewer: Costache Apreutesei (Iaşi) Cited in 3 ReviewsCited in 25 Documents MSC: 53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) 53C20 Global Riemannian geometry, including pinching 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.) Keywords:volume of vector fields; critical points; minimal vector fields; Killing vector fields; Hopf vector fields; minimal immersion × Cite Format Result Cite Review PDF Full Text: DOI References: [1] D. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin, 1976. · Zbl 0319.53026 · doi:10.1007/BFb0079307 [2] E. Boeckx and L. Vanhecke, Harmonic and minimal radial vector fields, Acta Math. Hungar. 90 (2001), 317–331. · Zbl 1012.53040 · doi:10.1023/A:1010687231629 [3] E. Boeckx and L. Vanhecke, Harmonic and minimal vector fields on tangent and unit tangent bundles, Differential Geom. Appl. 13 (2000), 77–93. · Zbl 0973.53053 · doi:10.1016/S0926-2245(00)00021-8 [4] F. J. Carreras, Linear invariants of Riemannian almost-product manifold, Math. Proc. Cambridge Philos. Soc. 91 (1982), 99–106. · Zbl 0481.53033 · doi:10.1017/S0305004100059156 [5] O. Gil-Medrano, On the volume functional in the manifold of unit vector fields, Proceedings of the Workshop on Recent Topics in Differential Geometry, Santiago de Compostela, july 1997, 155–164 (Eds. L. A. Cordero and E. García Río), Publ. Dpto. Geom. y Top., Univ. Santiago de Compostela, 1998. · Zbl 0937.53019 [6] O. Gil-Medrano, J. C. González-Dávila and L. Vanhecke, Harmonic and minimal invariant unit vector fields on homogeneous Riemannian manifolds, Houston J. Math. 27 (2001), 377–409. · Zbl 1015.53030 [7] H. Gluck and W. Ziller, On the volume of a unit vector field on the three sphere, Comment. Math. Helv. 61 (1986), 177–192. · Zbl 0605.53022 · doi:10.1007/BF02621910 [8] J. C. González-Dávila and L. Vanhecke, Examples of minimal unit vector fields, Ann. Global Anal. Geom. 18 (2000), 385–404. · Zbl 1005.53026 · doi:10.1023/A:1006788819180 [9] J. C. González-Dávila and L. Vanhecke, Minimal and harmonic characteristic vector fields on three-dimensional contact metric manifolds, J. Geom., · Zbl 1005.53039 · doi:10.1007/s00022-001-8570-4 [10] J. C. González-Dávila and L. Vanhecke, Invariant harmonic vector fields on Lie groups, Boll. Un. Mat. Ital. 48 (2001). · Zbl 1015.53030 [11] D. Gromoll and K. Grove, One dimensional metric foliations in constant curvature spaces, Differential Geometry and Complex Analysis, Rauch Memorial Volume, Springer, Berlin, 1985. · Zbl 0566.53035 [12] D. L. Johnson, Volume of flows, Proc. Amer. Math. Soc. 104 (1988), 923–932. · Zbl 0687.58031 [13] S. L. Pedersen, Volumes of vector fields on spheres, Trans. Amer. Math. Soc. 336 (1993), 69–78. · Zbl 0771.53023 · doi:10.2307/2154338 [14] K. Tsukada and L. Vanhecke, Invariant minimal vector fields on Lie groups, Period. Math. Hungar. (2000), 123–133. · Zbl 0973.53045 · doi:10.1023/A:1010331408580 [15] K. Tsukada and L. Vanhecke, Minimality and harmonicity for Hopf vector fields, Illinois J. Math., · Zbl 0997.53040 [16] K. Tsukada and L. Vanhecke, Minimal and harmonic unit vector fields in \(G_2(\text \bi C^m+2)\) and its dual space, Monatch. Math. 130 (2000), 143–154. · Zbl 0954.53040 · doi:10.1007/PL00010086 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.