zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A trust-region approach to the regularization of large-scale discrete forms of ill-posed problems. (English) Zbl 1006.86004
Summary: We consider large-scale least squares problems where the coefficient matrix comes from the discretization of an operator in an ill-posed problem, and the right-hand side contains noise. Special techniques known as regularization methods are needed to treat these problems in order to control the effect of the noise on the solution. We pose the regularization problem as a quadratically constrained least squares problem. This formulation is equivalent to Tikhonov regularization, and we note that it is also a special case of the trust-region subproblem from optimization. We analyze the trust-region subproblem in the regularization case and we consider the nontrivial extensions of a recently developed method for general large-scale subproblems that will allow us to handle this case. The method relies on matrix-vector products only, has low and fixed storage requirements, and can handle the singularities arising in ill-posed problems. We present numerical results on test problems, on an inverse interpolation problem with field data, and on a model seismic inversion problem with field data.

86A22Inverse problems in geophysics
65K10Optimization techniques (numerical methods)
90C06Large-scale problems (mathematical programming)
Full Text: DOI