zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Survey of gain-scheduling analysis and design. (English) Zbl 1006.93534
Summary: The gain-scheduling approach is perhaps one of the most popular nonlinear control design approaches which has been widely and successfully applied in fields ranging from aerospace to process control. Despite the wide application of gain-scheduling controllers and a diverse academic literature relating to gain-scheduling extending back nearly thirty years, there is a notable lack of a formal review of the literature. Moreover, whilst much of the classical gain-scheduling theory originates from the 1960s, there has recently been a considerable increase in interest in gain-scheduling in the literature with many new results obtained. An extended review of the gain-scheduling literature therefore seems both timely and appropriate. The scope of this paper includes the main theoretical results and design procedures relating to continuous gain-scheduling (in the sense of decomposition of nonlinear design into linear sub-problems) control with the aim of providing both a critical overview and a useful entry point into the relevant literature.

93B51Design techniques in systems theory
93D15Stabilization of systems by feedback
Full Text: DOI