×

Kripke completeness of infinitary predicate multimodal logics. (English) Zbl 1007.03016

Summary: Kripke completeness of some infinitary predicate modal logics is presented. More precisely, we prove that if a normal modal logic \({\mathbf L}\) above \({\mathbf K}\) is \({\mathcal D}\)-persistent and universal, the infinitary and predicate extension of \({\mathbf L}\) with \(\text{BF}_{\omega_1}\) and BF is Kripke complete, where \(\text{BF}_{\omega_1}\) and BF denote the formulas \(\bigwedge_{i\in\omega} \square p_i\supset\square \bigwedge_{i\in \omega}p_i\) and \(\forall x\square \varphi\supset \square\forall x\varphi\), respectively. The results include the completeness of extensions of standard modal logics such as \({\mathbf K}\), and its extensions by the schemata T, B, 4, 5, D, and their combinations. The proof is obtained by extending the correspondence between the representation of modal algebras and the completeness of propositional modal logic to the infinite.

MSC:

03B45 Modal logic (including the logic of norms)
03G25 Other algebras related to logic
Full Text: DOI

References:

[1] Barwise, J., and S. Feferman, editors, Model-Theoretic Logic , Springer-Verlag, Berlin, 1985. · Zbl 0587.03001
[2] Chagrov, A. V., and M. V. Zakharyaschev, Modal Logic , Oxford University Press, Oxford, 1997. · Zbl 0871.03007
[3] Dickmann, M. A., Large Infinitary Languages , North-Holland, Amsterdam, 1975. · Zbl 0324.02010
[4] Dickmann, M. A., “Larger infinitary languages,” pp. 317–64 in Model-Theoretic Logic , edited by J. Barwise and S. Feferman, Springer-Verlag, Berlin, 1985.
[5] Fattorisi-Barnaba, M., and S. Grassotti, “An infinitary graded modal logic (graded modalities VI),” Mathematical Logic Quarterly , vol. 41 (1995), pp. 547–63. · Zbl 0833.03006 · doi:10.1002/malq.19950410410
[6] Feferman, S., “Lectures on proof theory,” pp. 1–107 in Proceedings of the Summer School in Logic , vol. 70, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1967. · Zbl 0248.02033
[7] Fine, K., Some Connections Between Elementary and Modal Logic, vol. 81, Studies in Logic, North-Holland, Amsterdam, 1975. · Zbl 0316.02021
[8] Görnemann, S., “A logic stronger than intuitionism,” The Journal of Symbolic Logic , vol. 36 (1971), pp. 249–61. JSTOR: · Zbl 0276.02013 · doi:10.2307/2270260
[9] Jónsson, B., and A. Tarski, “Boolean algebras with operators I,” American Journal of Mathematics , vol. 73 (1951), pp. 891–931. JSTOR: · Zbl 0045.31505 · doi:10.2307/2372123
[10] Kaneko, M., and T. Nagashima, “Game logic and its applications I,” Studia Logica , vol. 57 (1996), pp. 325–54. · Zbl 0858.03035 · doi:10.1007/BF00370838
[11] Kaneko, M., and T. Nagashima, “Game logic and its applications II,” Studia Logica , vol. 58 (1997), pp. 273–303. · Zbl 0871.03030 · doi:10.1023/A:1004975724824
[12] Karp, C., Languages with Expressions of Infinite Length , North-Holland, Amsterdam, 1964. · Zbl 0127.00901
[13] López-Escobar, E. G. K., “An interpolation theorem for denumerably long formulas,” Fundamenta Mathematicæ , vol. 57 (1965), pp. 253–72. · Zbl 0137.00701
[14] Lorenzen, P., “Algebraische und logitische Untersuchungen über freie Verbände,” The Journal of Symbolic Logic , vol. 16 (1951), pp. 81–106. JSTOR: · Zbl 0045.29502 · doi:10.2307/2266681
[15] Nadel, M. E., “Infinitary intuitionistic logic from a classical point of view,” Annals of Mathematical Logic , vol. 14 (1978), pp. 159–91. · Zbl 0406.03055 · doi:10.1016/0003-4843(78)90015-3
[16] Novikov, P. S., “Inconsistencies of certain logical calculi,” pp. 71–74 in Infinitistic Methods , Pergamon, Oxford, 1961.
[17] Radev, S., “Infinitary propositional normal modal logic,” Studia Logica , vol. 46 (1987), pp. 291–309. · Zbl 0644.03009 · doi:10.1007/BF00370641
[18] Rasiowa, H., and R. Sikorski, “A proof of the completeness theorem of Gödel,” Fundamenta Mathematicæ , vol. 37 (1950), pp. 193–200. · Zbl 0040.29303
[19] Rasiowa, H., and R. Sikorski, The Mathematics of Metamathematics, PWN-Polish Scientific Publishers, Warszawa, 1963. · Zbl 0122.24311
[20] Rauszer, C., and B. Sabalski, “Remarks on distributive pseudo-Boolean algebra,” Bulletin De L’academie Polonaise des Sciences , vol. 23 (1975), pp. 123–29. · Zbl 0309.02062
[21] Tanaka, Y., “Completeness theorem of infinitary propositional modal logic,” Research Report IS-RR-97-0007F, Japan Advanced Institute of Science and Technology, Ishikawa, 1997.
[22] Tanaka, Y., “Applications of Shimura’s methods of canonical model to intermediate infinitary logics,” Research Report IS-RR-98-0021F, Japan Advanced Institute of Science and Technology, Ishikawa, 1998.
[23] Tanaka, Y., “Representations of algebras and Kripke completeness of infinitary and predicate logics.” Ph.D. thesis, Japan Advanced Institute of Science and Technology, Ishikawa, 1999. · Zbl 1007.03016
[24] Tanaka, Y., and H. Ono, “The Rasiowa-Sikorski Lemma and Kripke completeness of predicate and infinitary modal logics,” pp. 419–37 in Advances in Modal Logic , vol. 2, edited by M. Zakharyashev et al., CSLI Publications, Stanford, 2000. · Zbl 0996.03012
[25] van Benthem, J., Modal Logic and Classical Logic , Bibliopolis, Naples, 1983. · Zbl 0639.03014
[26] Wolter, F., “The structure of lattices of subframe logics,” Annals of Pure and Applied Logic , vol. 86 (1997), pp. 47–100. · Zbl 0878.03015 · doi:10.1016/S0168-0072(96)00049-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.