Chebyshev’s method for number fields. (English) Zbl 1007.11069

Let \(\alpha\) be an irrational algebraic integer such that \({\mathbb{Q}}(\alpha) / {\mathbb{Q}}\) is Galois. If \(S\) is the set of primes splitting in \({\mathbb{Q}}(\alpha)\) then \[ \sum_{p \in S,\;p \leq x} 1\gg \frac{x^{1/d}}{\log x}, \quad \text{where} \quad d= [{\mathbb{Q}}(\alpha) : {\mathbb{Q}}]. \] The proof uses binomial coefficients and extends Chebyshev’s classical approach.


11R44 Distribution of prime ideals
11N05 Distribution of primes
Full Text: DOI Numdam EuDML


[1] Chebyshev, P.L., Memoire sur les nombres premiers. J. Math. pures et appl.17 (1852), 366-390.
[2] Chudnovsky, D., Chudnovsky, G., Applications of Padé approximations to the Grothendieck conjecture on linear differential equations. In Number theory (New York, 1983-84), 52-100, 1135, Springer, Berlin-New York, 1985. · Zbl 0565.14010
[3] Duke, W., Friedlander, J.B., Iwaniec, H., Equidistribution of roots of a quadratic congruence to prime moduli, Ann. of Math.141 (1995), 423-441. · Zbl 0840.11003
[4] Friedlander, J.B., Estimates for Prime Ideals. J. Number Theory, 12 (1980), 101-105. · Zbl 0428.12010
[5] Landau, E., Über die zu einem algebraischen Zahlkörper gehörige Zetafunktion und die Ausdehnung der Tschebyscheffschen Primzahlentheorie auf das Problem der Verteilung der Primideale. Crelle125 (1903), 64-188. · JFM 33.0215.01
[6] Poincaré, H., Extension aux nombres premiers complexes des Théorèmes de M. Tchebicheff. J. Math. Pures Appl. (4) 8 (1892), 25-68. · JFM 24.0171.02
[7] Vaaler, J., Voloch, J.F., The least nonsplit prime in Galois extensions of Q. J. Number Theory, to appear. · Zbl 0963.11066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.