Bellassoued, Mourad Unicité et contrôle pour le système de Lamé (Uniqueness and controllability for the Lamé system). (French) Zbl 1007.35006 ESAIM, Control Optim. Calc. Var. 6, 561-592 (2001). The Lamé system of the form \[ Pu\triangleq \biggl[\bigl( \partial^2_t- \mu(t,x)\Delta \bigr)id_n- \nu(t,x)\nabla (\text{div} \cdot)+R (t, x; \partial_t,\partial_x) \biggr]u=0 \] is considered and it is shown to have local Cauchy uniqueness across a noncharacteristic surface. The proof requires a general Fourier transform to be applied to the symbol of \(P\) and certain micro-local techniques to obtain a generalized Carleman inequality from which uniqueness follows by standard arguments.The result is applied to the boundary control of the Lamé system for both Dirichlet and Neumann boundary conditions using the Hilbert uniqueness approach of Lions. Reviewer: Stephan Paul Banks (Sheffield) Cited in 4 Documents MSC: 35B37 PDE in connection with control problems (MSC2000) 93B05 Controllability 74B05 Classical linear elasticity Keywords:elastic wave equation; local Cauchy uniqueness; non-characteristic surface; Fourier transform; Carleman inequality; boundary control; Hilbert uniqueness approach of Lions × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] S. Alinhac , Non unicité du problème de Cauchy . Ann. Math. 117 ( 1983 ) 77 - 108 . MR 683803 | Zbl 0516.35018 · Zbl 0516.35018 · doi:10.2307/2006972 [2] S. Alinhac et M.S. Baouendi , A non uniqueness result for operators of principal type . Math. Z. 220 ( 1995 ) 561 - 568 . Article | MR 1363855 | Zbl 0851.35003 · Zbl 0851.35003 · doi:10.1007/BF02572631 [3] D. Ang , M. Ikehata , D. Trong et M. Yamampto , Unique continuation for a stationary isotropic Lamé system with variable coefficients . Comm. Partial Differential Equations 23 ( 1998 ) 371 - 385 . MR 1608540 | Zbl 0892.35054 · Zbl 0892.35054 [4] B. Dehman et L. Robbiano , La propriété du prolongement unique pour un système elliptique . Le système de Lamé. J. Math. Pures Appl. 72 ( 1993 ) 475 - 492 . MR 1239100 | Zbl 0832.73012 · Zbl 0832.73012 [5] M. Eller , V. Isakov , G. Nakamura et D. Tataru , Uniqueness and Stability in the Cauchy Problem for Maxwell’ and elasticity systems . Preprint. · Zbl 1038.35159 [6] L. Hörmander , On the uniqueness of the Cauchy problem under partial analy-ticity assumptions . Preprint ( 1996 ). MR 104924 | Zbl 0907.35002 · Zbl 0907.35002 [7] L. Hörmander , Linear partial differential operators . Springer Verlag, Berlin ( 1963 ). MR 404822 | Zbl 0108.09301 · Zbl 0108.09301 [8] L. Hörmander , The analysis of linear partial differential operators, I -III. Springer Verlag. · Zbl 0612.35001 [9] V. Isakov , A non hyperbolic Cauchy problem for \(\square _a.\square {}_b\) and its applications to elasticity theory . Comm. Pure Math. Appl. 39 ( 1986 ) 747 - 767 . MR 859272 | Zbl 0649.35015 · Zbl 0649.35015 · doi:10.1002/cpa.3160390603 [10] N. Lerner , Unicité de Cauchy pour des opérateurs faiblement principalement normaux . J. Math. Pures Appl. 64 ( 1985 ) 1 - 11 . MR 802381 | Zbl 0579.35012 · Zbl 0579.35012 [11] J.-L. Lions , Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués . Masson, Collection RMA, Paris ( 1988 ). Zbl 0653.93003 · Zbl 0653.93003 [12] L. Robbiano , Théorème d’unicité adapté au contrôle des solutions des problèmes hyperboliques . Comm. Partial Differential Equations 16 ( 1991 ) 789 - 800 . Zbl 0735.35086 · Zbl 0735.35086 · doi:10.1080/03605309108820778 [13] L. Robbiano et C. Zuily , Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients . Invent. Math. 131 ( 1998 ) 493 - 539 . MR 1614547 | Zbl 0909.35004 · Zbl 0909.35004 · doi:10.1007/s002220050212 [14] J. Sjöstrand , Singularités analytiques microlocales . Astérisque 95 ( 1982 ). MR 699623 | Zbl 0524.35007 · Zbl 0524.35007 [15] D. Tataru , Unique continuation for solutions to P .D.E’s between Hörmander’s theorem and Holmgren’s theorem. Comm. on P.D.E. 20 ( 1995 ) 855 - 884 . Zbl 0846.35021 · Zbl 0846.35021 · doi:10.1080/03605309508821117 [16] C. Zuily , Lectures on uniqueness and non uniqueness in the Cauchy probem . Birkhäuser, Progress in Math. 33 ( 1983 ). Zbl 0521.35003 · Zbl 0521.35003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.