zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Oscillation of linear difference equations with deviating arguments. (English) Zbl 1007.39002
The difference equation with deviating arguments $$\Delta^2 u(k)+ \sum^m_{j=1} p_j(k) u(\sigma_j(k))= 0,$$ is considered, where $\Delta u(k)= u(k+1)- u(k)$, $\Delta^2= \Delta\circ \Delta$, $p_j\ge 0$, and $\lim_{k\to\infty} \sigma_j(k)= \infty$, $j= 1,\dots, m$. Sufficient conditions are obtained for all proper solutions of the equation to be oscillatory.

39A11Stability of difference equations (MSC2000)
65Q05Numerical methods for functional equations (MSC2000)
Full Text: DOI
[1] Agarwal, R. P.: 2nd edition difference equations and inequalities. Difference equations and inequalities (2000)
[2] Agarwal, R. P.; Grace, S. R.; O’regan, D.: Oscillation theory for difference and functional differential equations. (2000)
[3] Cheng, S. S.; Yan, T. Ch.; Li, H. J.: Oscillation criteria for second order difference equations. Funkcialaj equacioj 34, 223-239 (1991) · Zbl 0773.39001
[4] Edwards, R. E.: Functional analysis, theory and applications. (1965) · Zbl 0182.16101
[5] Gyo?ri, I.; Ladas, G.: Oscillation theory of delay differential equations with applications. (1991)
[6] Grace, S. R.; Lalli, B. S.: Oscillation theorems for second order delay and neutral difference equations. Utilitas Mathematica 45, 197-211 (1994) · Zbl 0808.39005
[7] Hinton, D. B.; Lewis, R. T.: Spectral analysis of second order difference equations. J. math. Anal. appl 63, 421-438 (1978) · Zbl 0392.39001
[8] Hooker, J. W.; Patula, W. T.: Riccati type transformations for second order linear difference equations. J. math. Anal. appl. 82, 451-462 (1981) · Zbl 0471.39007
[9] Kwong, M. K.; Hooker, J. W.; Patula, W. T.: Riccati type transformations for second order linear difference equations, II. J. math. Anal. appl 107, 182-196 (1985) · Zbl 0576.39002