Functional calculus on \(BMO\) and related spaces. (English) Zbl 1007.47028

It is considered a nonlinear autonomous superposition operator \[ {\mathbf T}_f [g] = f\circ g \] on a certain subspace \(X\) of the space \(BMO({\mathbb R}^n)\). The question is to characterise those Borel measurable functions \(f\) for which the operator \({\mathbf T}_f\) is continuous or differentiable on \(X\). The following subspaces \(X\) are considered: \(BMO({\mathbb R}^n)\), \(VMO({\mathbb R}^n)\) and \(CMO({\mathbb R}^n)\) (closure in \(BMO\)-norm of \(C_c^{\infty}({\mathbb R}^n)\) as well as their respective inhomogeneous counterparts. Namely, \(X = bmo({\mathbb R}^n)\) (a linear subspace of those functions having finite mean on the unit cube in \({\mathbb R}^n\)), \(X = cmo({\mathbb R}^n)\) (closure in \(bmo\)-norm of \(C_c^{\infty}({\mathbb R}^n)\)), \(X = vmo({\mathbb R}^n) = VMO({\mathbb R}^n) \cap bmo({\mathbb R}^n)\). The results by Fominykh-Chevalier, Brezis-Nirenberg and Marcus-Mizel are extended.


47H30 Particular nonlinear operators (superposition, Hammerstein, Nemytskiĭ, Uryson, etc.)
47A60 Functional calculus for linear operators
Full Text: DOI


[1] Bourdaud, G., Fonctions qui opèrent sur LES espaces de Besov et de Triebel, Ann. inst. H. Poincaré anal. non linéaire, 10, 413-422, (1993) · Zbl 0741.46010
[2] Brezis, H.; Nirenberg, L., Degree theory and BMO. part I. compact manifolds without boundaries, Selecta math. (N.S.), 1, 197-263, (1995) · Zbl 0852.58010
[3] Chevalier, L., Quelles sont LES fonctions qui opèrent de BMO dans BMO ou de BMO dans L∞?, Bull. London math. soc., 27, 590-594, (1995) · Zbl 0843.42009
[4] Coifman, R.; Weiss, G., Extension of Hardy spaces and their use in analysis, Bull. amer. math. soc., 83, 569-645, (1977) · Zbl 0358.30023
[5] DeVore, R.A.; Lorentz, G.G., Constructive approximation, (1993), Springer-Verlag Berlin · Zbl 0797.41016
[6] Fominykh, M.A., Transformation of BMO functions, Vestnik moskov. univ. ser. I mat. mekh., 94, 20-24, (1985) · Zbl 0653.42011
[7] Janson, S., On functions with conditions on Mean oscillation, Ark. mat., 14, 189-196, (1976) · Zbl 0341.43005
[8] Katznelson, Y., An introduction to harmonic analysis, (1976), Dover New York · Zbl 0169.17902
[9] Marcus, M.; Mizel, V.J., Every superposition operator mapping one Sobolev space into another is continuous, J. funct. anal., 33, 217-229, (1979) · Zbl 0418.46024
[10] Sarason, D., Functions of vanishing Mean oscillation, Trans. amer. math. soc., 207, 391-405, (1975) · Zbl 0319.42006
[11] Stegenga, D.A., Bounded Toeplitz operators on H1 and applications of duality between H1 and the functions of bounded Mean oscillation, Amer. J. math., 98, 573-589, (1976) · Zbl 0335.47018
[12] Stein, E.M., Harmonic analysis, (1993), Princeton Univ. Press Princeton
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.